以DRUMSTICK TREE (Moringa oleifera) Lam.叶提取物介导的银纳米粒子合成及其对鼻腔细菌病原体的抗菌活性

IF 0.6 Q4 FOOD SCIENCE & TECHNOLOGY Journal of microbiology, biotechnology and food sciences Pub Date : 2023-09-25 DOI:10.55251/jmbfs.6015
Nidhi Pal, Shweta Agrawal
{"title":"以DRUMSTICK TREE (Moringa oleifera) Lam.叶提取物介导的银纳米粒子合成及其对鼻腔细菌病原体的抗菌活性","authors":"Nidhi Pal, Shweta Agrawal","doi":"10.55251/jmbfs.6015","DOIUrl":null,"url":null,"abstract":"Nanoparticles are unique and show different physical and chemical properties from their bulk material. Silver nanoparticles have a variety of antimicrobial applications. In the present study Silver nanoparticles (Ag-NPs) were synthesized by green methodology using the plant Moringa oliefera Lam. leaf extract. The main objective of this study was to synthesize silver nanoparticles without using any hazardous chemicals for future biomedical uses. M. oleifera Lam. is a well-known medicinal plant and is used in the preparation of different ayurvedic medicines. This plant is a rich source of polyphenols, folic acid, and beta-carotene. The effect of temperature on the synthesis of nanoparticles was also determined. The synthesized silver nanoparticles showed an absorbance peak at 430 nm with a UV-Vis spectrophotometer. X-ray diffraction study and TEM analysis exhibited the crystalline nature of silver nanoparticles and revealed that their size is 20-30 nm. An antimicrobial activity study was also performed against the most common nosocomial pathogens and the results revealed that the synthesized Ag-NPs have significant antimicrobial properties against MRSA, Escherichia coli, Klebsiella (ESBL), and Salmonella enterica. The antibacterial efficacy of silver nanoparticles was also determined using MIC and MBC. This study concluded that M. oliefera Lam. exhibited strong potential for the synthesis of silver nanoparticles. These synthesized silver nanoparticles are stable and eco-friendly and could be used to control bacterial growth of common pathogenic microorganisms including some multi-drug resistant (MDR) bacterial strains such as MRSA and Klebsiella (ESBL).","PeriodicalId":16348,"journal":{"name":"Journal of microbiology, biotechnology and food sciences","volume":"30 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DRUMSTICK TREE (Moringa oleifera) Lam. LEAF EXTRACT MEDIATED SYNTHESIS OF SILVER NANOPARTICLES AND THEIR ANTIBACTERIAL ACTIVITY AGAINST NOSOCOMIAL BACTERIAL PATHOGENS\",\"authors\":\"Nidhi Pal, Shweta Agrawal\",\"doi\":\"10.55251/jmbfs.6015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanoparticles are unique and show different physical and chemical properties from their bulk material. Silver nanoparticles have a variety of antimicrobial applications. In the present study Silver nanoparticles (Ag-NPs) were synthesized by green methodology using the plant Moringa oliefera Lam. leaf extract. The main objective of this study was to synthesize silver nanoparticles without using any hazardous chemicals for future biomedical uses. M. oleifera Lam. is a well-known medicinal plant and is used in the preparation of different ayurvedic medicines. This plant is a rich source of polyphenols, folic acid, and beta-carotene. The effect of temperature on the synthesis of nanoparticles was also determined. The synthesized silver nanoparticles showed an absorbance peak at 430 nm with a UV-Vis spectrophotometer. X-ray diffraction study and TEM analysis exhibited the crystalline nature of silver nanoparticles and revealed that their size is 20-30 nm. An antimicrobial activity study was also performed against the most common nosocomial pathogens and the results revealed that the synthesized Ag-NPs have significant antimicrobial properties against MRSA, Escherichia coli, Klebsiella (ESBL), and Salmonella enterica. The antibacterial efficacy of silver nanoparticles was also determined using MIC and MBC. This study concluded that M. oliefera Lam. exhibited strong potential for the synthesis of silver nanoparticles. These synthesized silver nanoparticles are stable and eco-friendly and could be used to control bacterial growth of common pathogenic microorganisms including some multi-drug resistant (MDR) bacterial strains such as MRSA and Klebsiella (ESBL).\",\"PeriodicalId\":16348,\"journal\":{\"name\":\"Journal of microbiology, biotechnology and food sciences\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microbiology, biotechnology and food sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55251/jmbfs.6015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology, biotechnology and food sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55251/jmbfs.6015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

纳米粒子是独特的,其物理和化学性质与块状材料不同。银纳米粒子具有多种抗菌用途。本研究采用绿色方法,利用辣木叶提取物合成了银纳米粒子(Ag-NPs)。本研究的主要目的是在不使用任何有害化学物质的情况下合成银纳米粒子,用于未来的生物医学用途。M. oleifera Lam. 是一种著名的药用植物,可用于制备不同的阿育吠陀药物。这种植物是多酚、叶酸和β-胡萝卜素的丰富来源。还测定了温度对纳米粒子合成的影响。在紫外可见分光光度计上,合成的银纳米粒子在 430 纳米处显示出吸光度峰。X 射线衍射研究和 TEM 分析表明,银纳米粒子具有结晶性质,尺寸为 20-30 纳米。结果表明,合成的 Ag-NPs 对 MRSA、大肠杆菌、克雷伯氏菌(ESBL)和肠炎沙门氏菌具有显著的抗菌特性。此外,还利用 MIC 和 MBC 测定了银纳米粒子的抗菌效果。这项研究认为,M. oliefera Lam.具有合成银纳米粒子的强大潜力。这些合成的银纳米粒子既稳定又环保,可用于控制常见病原微生物的细菌生长,包括一些耐多药(MDR)细菌菌株,如 MRSA 和克雷伯氏菌(ESBL)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DRUMSTICK TREE (Moringa oleifera) Lam. LEAF EXTRACT MEDIATED SYNTHESIS OF SILVER NANOPARTICLES AND THEIR ANTIBACTERIAL ACTIVITY AGAINST NOSOCOMIAL BACTERIAL PATHOGENS
Nanoparticles are unique and show different physical and chemical properties from their bulk material. Silver nanoparticles have a variety of antimicrobial applications. In the present study Silver nanoparticles (Ag-NPs) were synthesized by green methodology using the plant Moringa oliefera Lam. leaf extract. The main objective of this study was to synthesize silver nanoparticles without using any hazardous chemicals for future biomedical uses. M. oleifera Lam. is a well-known medicinal plant and is used in the preparation of different ayurvedic medicines. This plant is a rich source of polyphenols, folic acid, and beta-carotene. The effect of temperature on the synthesis of nanoparticles was also determined. The synthesized silver nanoparticles showed an absorbance peak at 430 nm with a UV-Vis spectrophotometer. X-ray diffraction study and TEM analysis exhibited the crystalline nature of silver nanoparticles and revealed that their size is 20-30 nm. An antimicrobial activity study was also performed against the most common nosocomial pathogens and the results revealed that the synthesized Ag-NPs have significant antimicrobial properties against MRSA, Escherichia coli, Klebsiella (ESBL), and Salmonella enterica. The antibacterial efficacy of silver nanoparticles was also determined using MIC and MBC. This study concluded that M. oliefera Lam. exhibited strong potential for the synthesis of silver nanoparticles. These synthesized silver nanoparticles are stable and eco-friendly and could be used to control bacterial growth of common pathogenic microorganisms including some multi-drug resistant (MDR) bacterial strains such as MRSA and Klebsiella (ESBL).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
156
审稿时长
8 weeks
期刊介绍: The Journal of Microbiology, Biotechnology and Food Sciences is an Open Access, peer-reviewed online scientific journal published by the Faculty of Biotechnology and Food Sciences (Slovak University of Agriculture in Nitra). The major focus of the journal is regular publishing of original scientific articles, short communications and reviews about animal, plant and environmental microbiology (including bacteria, fungi, yeasts, algae, protozoa and viruses), microbial, animal and plant biotechnology and physiology, microbial, plant and animal genetics, molecular biology, agriculture and food chemistry and biochemistry, food control, evaluation and processing in food science and environmental sciences.
期刊最新文献
VERIFICATION OF EFFICIENCIES OF HYGIENIC SEPARATOR, AND BACTERIOLOGICAL EVALUATION OF RECYCLED MANURE MATERIAL USED AS BEDDING FOR DAIRY COWS THE RESISTANCE OF OOCYTES AND IN VITRO PRODUCED CATTLE EMBRYOS TO CRYOPRESERVATION MEAT PERFORMANCE, CHEMICAL COMPOSITION AND SENSORY EVALUATION OF MYOCASTOR COYPUS MEAT EFFECTS OF LIMA BEAN (Phaseolus lunatus) FLOUR ON COGNITIVE FUNCTION AND GROWTH RECOVERY MALNUTRITION RATS THE APPLICATION OF NON-BAKERY RAW MATERIALS TO BAKERY FLOURS, THEIR EFFECT ON THE TECHNOLOGICAL QUALITY AND THE COST OF INNOVATIVE PRODUCTS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1