使用 SVM 和 CNN 方法对红洋葱植物病害进行分类

Alya Zalvadila
{"title":"使用 SVM 和 CNN 方法对红洋葱植物病害进行分类","authors":"Alya Zalvadila","doi":"10.30591/jpit.v8i3.5341","DOIUrl":null,"url":null,"abstract":"Shallots are one of the most widely produced crops in Enrekang Regency. The obstacle in cultivation is the presence of disease in the plant which can reduce production yields. We can recognize this disease from the spots on the leaves because these spots have unique color and texture characteristics. The aim of this research is to determine the results of the classification of shallot plant diseases which focuses on purple spot and moler disease. The classification algorithms used are CNN and SVM with RBF, linear, sigmoid and polynomial kernels. The feature extraction method used is Gray Level Co-occurance Matrix (GLCM). The analysis was carried out using 320 datasets with 2 classes, namely, purple spot disease and moler disease, each class has 160 datasets. The test results show that the CNN and SVM methods with RBF, linear and polynomial kernels get accuracy, precision, recall and F1 scores of 100% respectively. Meanwhile, the SVM method on the sigmoid kernel using texture feature extraction with the GLCM method states that the accuracy value is 75%, precision 75%, recall 73% and F1-Score 74%. So these results state that the Sigmoid method using GLCM feature extraction has the lowest value among other methods","PeriodicalId":503683,"journal":{"name":"Jurnal Informatika: Jurnal Pengembangan IT","volume":"100 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Klasifikasi Penyakit Tanaman Bawang Merah Menggunakan Metode SVM dan CNN\",\"authors\":\"Alya Zalvadila\",\"doi\":\"10.30591/jpit.v8i3.5341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shallots are one of the most widely produced crops in Enrekang Regency. The obstacle in cultivation is the presence of disease in the plant which can reduce production yields. We can recognize this disease from the spots on the leaves because these spots have unique color and texture characteristics. The aim of this research is to determine the results of the classification of shallot plant diseases which focuses on purple spot and moler disease. The classification algorithms used are CNN and SVM with RBF, linear, sigmoid and polynomial kernels. The feature extraction method used is Gray Level Co-occurance Matrix (GLCM). The analysis was carried out using 320 datasets with 2 classes, namely, purple spot disease and moler disease, each class has 160 datasets. The test results show that the CNN and SVM methods with RBF, linear and polynomial kernels get accuracy, precision, recall and F1 scores of 100% respectively. Meanwhile, the SVM method on the sigmoid kernel using texture feature extraction with the GLCM method states that the accuracy value is 75%, precision 75%, recall 73% and F1-Score 74%. So these results state that the Sigmoid method using GLCM feature extraction has the lowest value among other methods\",\"PeriodicalId\":503683,\"journal\":{\"name\":\"Jurnal Informatika: Jurnal Pengembangan IT\",\"volume\":\"100 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Informatika: Jurnal Pengembangan IT\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30591/jpit.v8i3.5341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Informatika: Jurnal Pengembangan IT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30591/jpit.v8i3.5341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大葱是恩瑞康地区最广泛种植的作物之一。种植中的障碍是植物中存在病害,这会降低产量。我们可以从叶片上的病斑识别这种病害,因为这些病斑具有独特的颜色和纹理特征。本研究的目的是确定大葱植物病害的分类结果,重点是紫斑病和莫勒病。使用的分类算法是带有 RBF、线性、sigmoid 和多项式核的 CNN 和 SVM。使用的特征提取方法是灰度共存矩阵(GLCM)。分析使用了 320 个数据集,其中有 2 个类别,即紫斑病和莫勒病,每个类别有 160 个数据集。测试结果表明,采用 RBF、线性和多项式核的 CNN 和 SVM 方法的准确度、精确度、召回率和 F1 分数分别为 100%。同时,使用 GLCM 方法提取纹理特征的 sigmoid 核 SVM 方法的准确率为 75%,精确率为 75%,召回率为 73%,F1 分数为 74%。因此,这些结果表明,在其他方法中,使用 GLCM 特征提取的 Sigmoid 方法的准确度值最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Klasifikasi Penyakit Tanaman Bawang Merah Menggunakan Metode SVM dan CNN
Shallots are one of the most widely produced crops in Enrekang Regency. The obstacle in cultivation is the presence of disease in the plant which can reduce production yields. We can recognize this disease from the spots on the leaves because these spots have unique color and texture characteristics. The aim of this research is to determine the results of the classification of shallot plant diseases which focuses on purple spot and moler disease. The classification algorithms used are CNN and SVM with RBF, linear, sigmoid and polynomial kernels. The feature extraction method used is Gray Level Co-occurance Matrix (GLCM). The analysis was carried out using 320 datasets with 2 classes, namely, purple spot disease and moler disease, each class has 160 datasets. The test results show that the CNN and SVM methods with RBF, linear and polynomial kernels get accuracy, precision, recall and F1 scores of 100% respectively. Meanwhile, the SVM method on the sigmoid kernel using texture feature extraction with the GLCM method states that the accuracy value is 75%, precision 75%, recall 73% and F1-Score 74%. So these results state that the Sigmoid method using GLCM feature extraction has the lowest value among other methods
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Teknologi Deteksi Dini Banjir Daerah Aliran Sungai menggunakan Heltec Wifi LoRa 32 V2 Sistem Diagnosa Penyakit Liver Menggunakan Metode Artificial Neural Network: Studi Berdasarkan Dataset Indian Liver Patient Dataset Rancang Bangun Aplikasi Diet untuk Ibu Menyusui Pasca Persalinan dengan Algoritma Mifflin-St Jeor Penyesuaian Model Ketahanan Siber Umkm Di Indonesia Dengan Nist Cybersecurity Framework Pemanfaatan Narrowband IoT (NB-IoT) dalam Peningkatan Produktivitas Peternakan melalui Monitoring Otomatis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1