荞麦--基因组、转录组和蛋白质组观点

IF 0.6 Q4 FOOD SCIENCE & TECHNOLOGY Journal of microbiology, biotechnology and food sciences Pub Date : 2023-09-04 DOI:10.55251/jmbfs.10059
Matúš Kučka, K. Ražná, Simona Čerteková, M. Chňapek, Lucia Mikolášová, Z. Gálová, Ž. Balážová
{"title":"荞麦--基因组、转录组和蛋白质组观点","authors":"Matúš Kučka, K. Ražná, Simona Čerteková, M. Chňapek, Lucia Mikolášová, Z. Gálová, Ž. Balážová","doi":"10.55251/jmbfs.10059","DOIUrl":null,"url":null,"abstract":"Buckwheat is a pseudocereal from the Polygonaceae family. Two species from this family are commercially exploited – common buckwheat and tartary buckwheat. Buckwheat comes from China, although in recent years, the highest production has been noted in Russia. With its nutritional composition (mainly rutin), it has a beneficial effect on human health. Rutin is mainly contained in the flowers and leaves of buckwheat, and it has antidiabetic, neuroprotective and antioxidant properties; it improves blood pressure and lowers cholesterol levels. In addition to rutin, buckwheat contains bioactive peptides that serve as trypsin inhibitors and have antioxidant and antimicrobial properties. Buckwheat found its use mainly in the field of food and feed production. Amplification polymorphism detection techniques are currently used for the genomic analyses of buckwheat, with 8,884 available markers that include 756 loci. The most frequently used type of molecular markers in buckwheat is the microsatellite markers, which form tandem repeats of short nucleotide motifs. The total number of microsatellites in the tartary buckwheat genome is 37,572, with a frequency of 83.25 microsatellites per 1 Mb. Based on their genetic variability, the buckwheat varieties can be divided into the European and Asian groups, with a lower diversity among the varieties in the European group. Genomic analyses can reveal the genetic relatedness or differences between the individual varieties, as well as losses in genetic purity. The transcriptomic analyses are primarily devoted to the expression of genes responsible for the synthesis of flavonoids, but also those involved in the plant's defense mechanisms, development etc. Molecular analyses revealed that the expression of genes supporting the synthesis of rutin can be favorably influenced by light, darkness, methyl jasmonate, abscisic acid etc. Some buckwheat genes were introduced into Arabidopsis, which subsequently showed improved properties, for example, resistance to drought. These findings not only enhance our understanding of buckwheat at a fundamental level but also hold practical significance for breeding programs focused on enhancing nutritional and agronomic traits in buckwheat varieties.","PeriodicalId":16348,"journal":{"name":"Journal of microbiology, biotechnology and food sciences","volume":"17 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BUCKWHEAT – A GENOMIC, TRANSCRIPTOMIC AND PROTEOMIC VIEW\",\"authors\":\"Matúš Kučka, K. Ražná, Simona Čerteková, M. Chňapek, Lucia Mikolášová, Z. Gálová, Ž. Balážová\",\"doi\":\"10.55251/jmbfs.10059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Buckwheat is a pseudocereal from the Polygonaceae family. Two species from this family are commercially exploited – common buckwheat and tartary buckwheat. Buckwheat comes from China, although in recent years, the highest production has been noted in Russia. With its nutritional composition (mainly rutin), it has a beneficial effect on human health. Rutin is mainly contained in the flowers and leaves of buckwheat, and it has antidiabetic, neuroprotective and antioxidant properties; it improves blood pressure and lowers cholesterol levels. In addition to rutin, buckwheat contains bioactive peptides that serve as trypsin inhibitors and have antioxidant and antimicrobial properties. Buckwheat found its use mainly in the field of food and feed production. Amplification polymorphism detection techniques are currently used for the genomic analyses of buckwheat, with 8,884 available markers that include 756 loci. The most frequently used type of molecular markers in buckwheat is the microsatellite markers, which form tandem repeats of short nucleotide motifs. The total number of microsatellites in the tartary buckwheat genome is 37,572, with a frequency of 83.25 microsatellites per 1 Mb. Based on their genetic variability, the buckwheat varieties can be divided into the European and Asian groups, with a lower diversity among the varieties in the European group. Genomic analyses can reveal the genetic relatedness or differences between the individual varieties, as well as losses in genetic purity. The transcriptomic analyses are primarily devoted to the expression of genes responsible for the synthesis of flavonoids, but also those involved in the plant's defense mechanisms, development etc. Molecular analyses revealed that the expression of genes supporting the synthesis of rutin can be favorably influenced by light, darkness, methyl jasmonate, abscisic acid etc. Some buckwheat genes were introduced into Arabidopsis, which subsequently showed improved properties, for example, resistance to drought. These findings not only enhance our understanding of buckwheat at a fundamental level but also hold practical significance for breeding programs focused on enhancing nutritional and agronomic traits in buckwheat varieties.\",\"PeriodicalId\":16348,\"journal\":{\"name\":\"Journal of microbiology, biotechnology and food sciences\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microbiology, biotechnology and food sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55251/jmbfs.10059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology, biotechnology and food sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55251/jmbfs.10059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

荞麦是一种蓼科假谷物。荞麦科中有两个品种可进行商业开发,即普通荞麦和鞑靼荞麦。荞麦产自中国,但近年来产量最高的是俄罗斯。荞麦的营养成分(主要是芦丁)对人体健康有益。芦丁主要存在于荞麦的花和叶中,具有抗糖尿病、保护神经和抗氧化的作用,还能改善血压和降低胆固醇水平。除芦丁外,荞麦还含有生物活性肽,可作为胰蛋白酶抑制剂,具有抗氧化和抗菌特性。荞麦主要用于食品和饲料生产领域。扩增多态性检测技术目前用于荞麦的基因组分析,有 8884 个可用标记,包括 756 个位点。荞麦中最常用的分子标记类型是微卫星标记,这种标记由短核苷酸主题串联重复而成。鞑靼荞麦基因组中的微卫星总数为 37,572 个,频率为每 1 Mb 83.25 个。根据遗传变异性,荞麦品种可分为欧洲组和亚洲组,其中欧洲组品种的多样性较低。基因组分析可以揭示各个品种之间的遗传亲缘关系或差异,以及遗传纯度的损失。转录组分析主要针对负责合成类黄酮的基因的表达,也包括参与植物防御机制、发育等的基因。分子分析表明,支持芦丁合成的基因的表达会受到光照、黑暗、茉莉酸甲酯、脱落酸等因素的有利影响。一些荞麦基因被导入拟南芥,随后表现出更好的特性,例如抗旱性。这些发现不仅从根本上加深了我们对荞麦的了解,而且对侧重于提高荞麦品种营养和农艺性状的育种计划具有实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BUCKWHEAT – A GENOMIC, TRANSCRIPTOMIC AND PROTEOMIC VIEW
Buckwheat is a pseudocereal from the Polygonaceae family. Two species from this family are commercially exploited – common buckwheat and tartary buckwheat. Buckwheat comes from China, although in recent years, the highest production has been noted in Russia. With its nutritional composition (mainly rutin), it has a beneficial effect on human health. Rutin is mainly contained in the flowers and leaves of buckwheat, and it has antidiabetic, neuroprotective and antioxidant properties; it improves blood pressure and lowers cholesterol levels. In addition to rutin, buckwheat contains bioactive peptides that serve as trypsin inhibitors and have antioxidant and antimicrobial properties. Buckwheat found its use mainly in the field of food and feed production. Amplification polymorphism detection techniques are currently used for the genomic analyses of buckwheat, with 8,884 available markers that include 756 loci. The most frequently used type of molecular markers in buckwheat is the microsatellite markers, which form tandem repeats of short nucleotide motifs. The total number of microsatellites in the tartary buckwheat genome is 37,572, with a frequency of 83.25 microsatellites per 1 Mb. Based on their genetic variability, the buckwheat varieties can be divided into the European and Asian groups, with a lower diversity among the varieties in the European group. Genomic analyses can reveal the genetic relatedness or differences between the individual varieties, as well as losses in genetic purity. The transcriptomic analyses are primarily devoted to the expression of genes responsible for the synthesis of flavonoids, but also those involved in the plant's defense mechanisms, development etc. Molecular analyses revealed that the expression of genes supporting the synthesis of rutin can be favorably influenced by light, darkness, methyl jasmonate, abscisic acid etc. Some buckwheat genes were introduced into Arabidopsis, which subsequently showed improved properties, for example, resistance to drought. These findings not only enhance our understanding of buckwheat at a fundamental level but also hold practical significance for breeding programs focused on enhancing nutritional and agronomic traits in buckwheat varieties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
156
审稿时长
8 weeks
期刊介绍: The Journal of Microbiology, Biotechnology and Food Sciences is an Open Access, peer-reviewed online scientific journal published by the Faculty of Biotechnology and Food Sciences (Slovak University of Agriculture in Nitra). The major focus of the journal is regular publishing of original scientific articles, short communications and reviews about animal, plant and environmental microbiology (including bacteria, fungi, yeasts, algae, protozoa and viruses), microbial, animal and plant biotechnology and physiology, microbial, plant and animal genetics, molecular biology, agriculture and food chemistry and biochemistry, food control, evaluation and processing in food science and environmental sciences.
期刊最新文献
VERIFICATION OF EFFICIENCIES OF HYGIENIC SEPARATOR, AND BACTERIOLOGICAL EVALUATION OF RECYCLED MANURE MATERIAL USED AS BEDDING FOR DAIRY COWS THE RESISTANCE OF OOCYTES AND IN VITRO PRODUCED CATTLE EMBRYOS TO CRYOPRESERVATION MEAT PERFORMANCE, CHEMICAL COMPOSITION AND SENSORY EVALUATION OF MYOCASTOR COYPUS MEAT EFFECTS OF LIMA BEAN (Phaseolus lunatus) FLOUR ON COGNITIVE FUNCTION AND GROWTH RECOVERY MALNUTRITION RATS THE APPLICATION OF NON-BAKERY RAW MATERIALS TO BAKERY FLOURS, THEIR EFFECT ON THE TECHNOLOGICAL QUALITY AND THE COST OF INNOVATIVE PRODUCTS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1