大孔碳的过氧化物酶模拟活性

Bekir Çakiroğlu
{"title":"大孔碳的过氧化物酶模拟活性","authors":"Bekir Çakiroğlu","doi":"10.46239/ejbcs.1215182","DOIUrl":null,"url":null,"abstract":"In this study, the peroxidase-like activity of macroporous carbon manufactured using a silica template was investigated. The nanozyme activity of macroporous carbon was compared to commercial graphene oxide. The field emission scanning electron microscopy image of carbon revealed macroporous morphology. The nanozyme activity was studied via the catalytic oxidation of chromogenic substrate 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) in the presence of hydrogen peroxide and the oxidized form of ABTS with a green color can be visualized by the eyes. Without functionalization and enzyme utilization, the fabricated macroporous carbon demonstrated green color development, indicating its peroxidase activity probably due to the large surface area and, thus, abundant active sites present on the surface. The oxygen-containing functional groups formed during carbonization act as active sites and can play a pivotal role in the peroxidase-mimicking activity.","PeriodicalId":338101,"journal":{"name":"Eurasian Journal of Biological and Chemical Sciences","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Makro gözenekli karbonun peroksidaz mimik aktivitesi\",\"authors\":\"Bekir Çakiroğlu\",\"doi\":\"10.46239/ejbcs.1215182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the peroxidase-like activity of macroporous carbon manufactured using a silica template was investigated. The nanozyme activity of macroporous carbon was compared to commercial graphene oxide. The field emission scanning electron microscopy image of carbon revealed macroporous morphology. The nanozyme activity was studied via the catalytic oxidation of chromogenic substrate 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) in the presence of hydrogen peroxide and the oxidized form of ABTS with a green color can be visualized by the eyes. Without functionalization and enzyme utilization, the fabricated macroporous carbon demonstrated green color development, indicating its peroxidase activity probably due to the large surface area and, thus, abundant active sites present on the surface. The oxygen-containing functional groups formed during carbonization act as active sites and can play a pivotal role in the peroxidase-mimicking activity.\",\"PeriodicalId\":338101,\"journal\":{\"name\":\"Eurasian Journal of Biological and Chemical Sciences\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasian Journal of Biological and Chemical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46239/ejbcs.1215182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Journal of Biological and Chemical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46239/ejbcs.1215182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了使用二氧化硅模板制造的大孔碳的过氧化物酶样活性。将大孔碳的纳米酶活性与商用氧化石墨烯进行了比较。碳的场发射扫描电子显微镜图像显示了大孔形态。在过氧化氢存在下,通过催化氧化发色底物 2,2'-偶氮双(3-乙基苯并噻唑啉-6-磺酸)(ABTS)来研究纳米酶的活性。在未进行功能化和酶利用的情况下,制备的大孔碳显示出绿色,这表明其具有过氧化物酶活性,这可能是由于大孔碳表面积较大,因此表面存在丰富的活性位点。碳化过程中形成的含氧官能团可作为活性位点,在过氧化物酶模拟活性中发挥关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Makro gözenekli karbonun peroksidaz mimik aktivitesi
In this study, the peroxidase-like activity of macroporous carbon manufactured using a silica template was investigated. The nanozyme activity of macroporous carbon was compared to commercial graphene oxide. The field emission scanning electron microscopy image of carbon revealed macroporous morphology. The nanozyme activity was studied via the catalytic oxidation of chromogenic substrate 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) in the presence of hydrogen peroxide and the oxidized form of ABTS with a green color can be visualized by the eyes. Without functionalization and enzyme utilization, the fabricated macroporous carbon demonstrated green color development, indicating its peroxidase activity probably due to the large surface area and, thus, abundant active sites present on the surface. The oxygen-containing functional groups formed during carbonization act as active sites and can play a pivotal role in the peroxidase-mimicking activity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of in vitro antidiabetic and antioxidant activity of hawthorn vinegar obtained from Endemic Crataegus tanacetifolia (Poir.) Pers. Endüstriyel amaçlı kullanılan bazı boyar maddelerin mutajenik etkilerinin Drosophila kanat benek testi ile in vitro olarak belirlenmesi Application of a new inhibitor for the corrosion of iron in acidic solution: Electrochemical effect of a scorpion venom Comparison of glutathione peroxidase-1 in free divers with their counterparts: A model study for sports informatics Possible inhibitory effects of hoslundal, hoslundin and hoslunddiol on human lactate dehydrogenases: a bioinformatics proof
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1