用于番茄镰刀菌枯萎病生物防治的基于微生物的协同兼容性联合体

IF 1.9 3区 农林科学 Q2 AGRONOMY Phytopathologia Mediterranea Pub Date : 2023-07-23 DOI:10.36253/phyto-13055
V. K. Sidharthan, G. Pothiraj, Vinayagamoorthy Suryaprakash, Ashutosh Kumar Singh, Rashmi Aggarwal, V. Shanmugam
{"title":"用于番茄镰刀菌枯萎病生物防治的基于微生物的协同兼容性联合体","authors":"V. K. Sidharthan, G. Pothiraj, Vinayagamoorthy Suryaprakash, Ashutosh Kumar Singh, Rashmi Aggarwal, V. Shanmugam","doi":"10.36253/phyto-13055","DOIUrl":null,"url":null,"abstract":"Bioconsortia, based on Chaetomium globosum (isolate CgCG-2), Pseudomonas putida (PpTS-1), Bacillus subtilis (BsS2BC-1), and Trichoderma harzianum (ThS17TH), were designed to develop eco-friendly alternatives for biocontrol of vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici (Fol). In vitro compatibilities of microbes in these consortia were assessed for growth, antagonism, and biocontrol-related gene expression. In these bioassays, the biocontrol isolates had positive interactions for the tested parameters. In pot experiments, seed and soil applications of culture suspensions of five different isolate mixtures were assessed, in comparisons with individual isolates, for efficacy in vascular wilt control after challenge inoculations with Fol under polyhouse conditions. Compared to experimental controls, the biocontrol isolate mixtures reduced vascular wilt incidence and promoted plant growth. PpTS-1 + CgCG-2 + ThS17TH was the most effective microbial consortium, giving 71% reduction of Fusarium wilt incidence compared to non-treated controls. This reduced incidence increased plant growth by 135%. Upregulation of genes encoding for allene oxide cyclase, pathogenesis-related proteins 3, and 5, and β-1,3-glucanase in tomato plants indicated that the reduction in vascular wilt by the consortia could be partly plant-mediated. This study provides new insights into the development of microbial-based consortia for the biocontrol of vascular wilt in tomato.","PeriodicalId":20165,"journal":{"name":"Phytopathologia Mediterranea","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A synergic and compatible microbial-based consortium for biocontrol of Fusarium wilt of tomato\",\"authors\":\"V. K. Sidharthan, G. Pothiraj, Vinayagamoorthy Suryaprakash, Ashutosh Kumar Singh, Rashmi Aggarwal, V. Shanmugam\",\"doi\":\"10.36253/phyto-13055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bioconsortia, based on Chaetomium globosum (isolate CgCG-2), Pseudomonas putida (PpTS-1), Bacillus subtilis (BsS2BC-1), and Trichoderma harzianum (ThS17TH), were designed to develop eco-friendly alternatives for biocontrol of vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici (Fol). In vitro compatibilities of microbes in these consortia were assessed for growth, antagonism, and biocontrol-related gene expression. In these bioassays, the biocontrol isolates had positive interactions for the tested parameters. In pot experiments, seed and soil applications of culture suspensions of five different isolate mixtures were assessed, in comparisons with individual isolates, for efficacy in vascular wilt control after challenge inoculations with Fol under polyhouse conditions. Compared to experimental controls, the biocontrol isolate mixtures reduced vascular wilt incidence and promoted plant growth. PpTS-1 + CgCG-2 + ThS17TH was the most effective microbial consortium, giving 71% reduction of Fusarium wilt incidence compared to non-treated controls. This reduced incidence increased plant growth by 135%. Upregulation of genes encoding for allene oxide cyclase, pathogenesis-related proteins 3, and 5, and β-1,3-glucanase in tomato plants indicated that the reduction in vascular wilt by the consortia could be partly plant-mediated. This study provides new insights into the development of microbial-based consortia for the biocontrol of vascular wilt in tomato.\",\"PeriodicalId\":20165,\"journal\":{\"name\":\"Phytopathologia Mediterranea\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytopathologia Mediterranea\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.36253/phyto-13055\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathologia Mediterranea","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.36253/phyto-13055","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

设计了以球毛壳菌(分离物 CgCG-2)、假单胞菌(PpTS-1)、枯草芽孢杆菌(BsS2BC-1)和毛霉菌(ThS17TH)为基础的生物联合体,以开发生态友好型替代品,用于生物防治由 Fusarium oxysporum f. sp. lycopersici (Fol) 引起的番茄维管束枯萎病。在体外对这些联合体中微生物的相容性进行了评估,包括生长、拮抗作用和生物防治相关基因的表达。在这些生物测定中,生物防治分离物对测试参数具有积极的相互作用。在盆栽实验中,与单个分离菌比较,评估了在多温室条件下接种 Fol 后,种子和土壤中施用五种不同分离菌混合物的培养悬浮液对维管束枯萎病的防治效果。与实验对照相比,生物防治分离物混合物降低了维管束枯萎病的发病率,促进了植物生长。PpTS-1 + CgCG-2 + ThS17TH 是最有效的微生物菌群,与未处理的对照组相比,镰刀菌枯萎病发病率降低了 71%。发病率的降低使植物生长提高了 135%。番茄植株中氧化烯环化酶、病原相关蛋白 3 和 5 以及 β-1,3-葡聚糖酶编码基因的上调表明,联合菌群降低维管枯萎病发病率的作用部分是由植物介导的。这项研究为开发基于微生物的联合菌群用于番茄维管束枯萎病的生物防治提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A synergic and compatible microbial-based consortium for biocontrol of Fusarium wilt of tomato
Bioconsortia, based on Chaetomium globosum (isolate CgCG-2), Pseudomonas putida (PpTS-1), Bacillus subtilis (BsS2BC-1), and Trichoderma harzianum (ThS17TH), were designed to develop eco-friendly alternatives for biocontrol of vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici (Fol). In vitro compatibilities of microbes in these consortia were assessed for growth, antagonism, and biocontrol-related gene expression. In these bioassays, the biocontrol isolates had positive interactions for the tested parameters. In pot experiments, seed and soil applications of culture suspensions of five different isolate mixtures were assessed, in comparisons with individual isolates, for efficacy in vascular wilt control after challenge inoculations with Fol under polyhouse conditions. Compared to experimental controls, the biocontrol isolate mixtures reduced vascular wilt incidence and promoted plant growth. PpTS-1 + CgCG-2 + ThS17TH was the most effective microbial consortium, giving 71% reduction of Fusarium wilt incidence compared to non-treated controls. This reduced incidence increased plant growth by 135%. Upregulation of genes encoding for allene oxide cyclase, pathogenesis-related proteins 3, and 5, and β-1,3-glucanase in tomato plants indicated that the reduction in vascular wilt by the consortia could be partly plant-mediated. This study provides new insights into the development of microbial-based consortia for the biocontrol of vascular wilt in tomato.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Phytopathologia Mediterranea
Phytopathologia Mediterranea 生物-植物科学
CiteScore
4.40
自引率
8.30%
发文量
28
审稿时长
6-12 weeks
期刊介绍: Phytopathologia Mediterranea is an international journal edited by the Mediterranean Phytopathological Union. The journal’s mission is the promotion of plant health for Mediterranean crops, climate and regions, safe food production, and the transfer of new knowledge on plant diseases and their sustainable management. The journal deals with all areas of plant pathology, including etiology, epidemiology, disease control, biochemical and physiological aspects, and utilization of molecular technologies. All types of plant pathogens are covered, including fungi, oomycetes, nematodes, protozoa, bacteria, phytoplasmas, viruses, and viroids. The journal also gives a special attention to research on mycotoxins, biological and integrated management of plant diseases, and the use of natural substances in disease and weed control. The journal focuses on pathology of Mediterranean crops grown throughout the world. The Editorial Board of Phytopathologia Mediterranea has recently been reorganised, under two Editors-in-Chief and with an increased number of editors.
期刊最新文献
Enhancing epidemiological knowledge of Botryosphaeriaceae in Mexican vineyards Genetic variability of grapevine Pinot gris virus (GPGV) in an organically cultivated vineyard in Hungary Fusarium wilt caused by Fusarium oxysporum f. sp. cubense tropical race 4 in banana plantations in Türkiye Diversity of Colletotrichum species on strawberry (Fragaria × ananassa) in Germany Evaluation of fungicides for management of Botryosphaeriaceae associated with dieback in Australian walnut orchards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1