{"title":"兴趣相投的用户群体社交智能系统","authors":"","doi":"10.23939/sisn2023.13.093","DOIUrl":null,"url":null,"abstract":"The article develops a general architectural system of socialization of groups of users with similar interests and functional requirements for it. To process a large part of the information, the system is implemented using the methods of fuzzy text information search and machine learning. thus, N-gram, selection expansion and structured Noisy Channel models are applied. A feature of the implementation is the processing of the text, the analysis of words in the text and the formation of evaluations. A convolutional neural network implementation is designed to determine user authenticity based on facial photo analysis. implementation of fuzzy search algorithms – for processing text data of various volumes to analyze information about each user, form a certain user rating, compare this user with other users to promote further socialization of users whose interests coincide the most. When experimentally checking the accuracy of the developed system by determining the percentage of similarity of current users with the help of N-grams and their connections. Running these algorithms simultaneously is about 15% more accurate than the N-gram algorithm and about 10 % more efficient and accurate than the others algorithm. The operation of the algorithm for linear search of tags in the dictionary and the operation of the Noisy Channel algorithm using the BK-tree are also analyzed. Thanks to which it was possible to achieve significant advantages in the work algorithm, instead of a linear view of the search time, a logarithmic dependence was obtained. A system of synchronous and asynchronous methods also works. At first, the difference is not visible, but the more requests, the faster the system loads and tries to respond to them more by displaying from asynchronous methods.","PeriodicalId":444399,"journal":{"name":"Vìsnik Nacìonalʹnogo unìversitetu \"Lʹvìvsʹka polìtehnìka\". Serìâ Ìnformacìjnì sistemi ta merežì","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent system for user groups socialization with similar interests\",\"authors\":\"\",\"doi\":\"10.23939/sisn2023.13.093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article develops a general architectural system of socialization of groups of users with similar interests and functional requirements for it. To process a large part of the information, the system is implemented using the methods of fuzzy text information search and machine learning. thus, N-gram, selection expansion and structured Noisy Channel models are applied. A feature of the implementation is the processing of the text, the analysis of words in the text and the formation of evaluations. A convolutional neural network implementation is designed to determine user authenticity based on facial photo analysis. implementation of fuzzy search algorithms – for processing text data of various volumes to analyze information about each user, form a certain user rating, compare this user with other users to promote further socialization of users whose interests coincide the most. When experimentally checking the accuracy of the developed system by determining the percentage of similarity of current users with the help of N-grams and their connections. Running these algorithms simultaneously is about 15% more accurate than the N-gram algorithm and about 10 % more efficient and accurate than the others algorithm. The operation of the algorithm for linear search of tags in the dictionary and the operation of the Noisy Channel algorithm using the BK-tree are also analyzed. Thanks to which it was possible to achieve significant advantages in the work algorithm, instead of a linear view of the search time, a logarithmic dependence was obtained. A system of synchronous and asynchronous methods also works. At first, the difference is not visible, but the more requests, the faster the system loads and tries to respond to them more by displaying from asynchronous methods.\",\"PeriodicalId\":444399,\"journal\":{\"name\":\"Vìsnik Nacìonalʹnogo unìversitetu \\\"Lʹvìvsʹka polìtehnìka\\\". Serìâ Ìnformacìjnì sistemi ta merežì\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vìsnik Nacìonalʹnogo unìversitetu \\\"Lʹvìvsʹka polìtehnìka\\\". Serìâ Ìnformacìjnì sistemi ta merežì\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23939/sisn2023.13.093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vìsnik Nacìonalʹnogo unìversitetu \"Lʹvìvsʹka polìtehnìka\". Serìâ Ìnformacìjnì sistemi ta merežì","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/sisn2023.13.093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
文章为具有相似兴趣和功能需求的用户群体开发了一个社交化通用架构系统。为了处理大部分信息,该系统采用了模糊文本信息搜索和机器学习的方法。因此,应用了 N-gram、选择扩展和结构化噪声通道模型。实施的一个特点是处理文本、分析文本中的词语并形成评价。模糊搜索算法的实现--用于处理各种数量的文本数据,分析每个用户的信息,形成一定的用户评价,将该用户与其他用户进行比较,以促进兴趣最一致的用户进一步社交。在 N-grams 及其连接的帮助下,通过确定当前用户的相似度百分比,在实验中检验所开发系统的准确性。同时运行这些算法的准确率比 N-gram 算法高出约 15%,比其他算法的效率和准确率高出约 10%。此外,还分析了字典中标签线性搜索算法的运行情况,以及使用 BK 树的噪声信道算法的运行情况。因此,该算法具有显著优势,搜索时间不再是线性的,而是对数的。同步和异步方法系统也同样有效。起初,两者的差异并不明显,但请求越多,系统加载速度就越快,并通过显示异步方法对请求做出更多响应。
Intelligent system for user groups socialization with similar interests
The article develops a general architectural system of socialization of groups of users with similar interests and functional requirements for it. To process a large part of the information, the system is implemented using the methods of fuzzy text information search and machine learning. thus, N-gram, selection expansion and structured Noisy Channel models are applied. A feature of the implementation is the processing of the text, the analysis of words in the text and the formation of evaluations. A convolutional neural network implementation is designed to determine user authenticity based on facial photo analysis. implementation of fuzzy search algorithms – for processing text data of various volumes to analyze information about each user, form a certain user rating, compare this user with other users to promote further socialization of users whose interests coincide the most. When experimentally checking the accuracy of the developed system by determining the percentage of similarity of current users with the help of N-grams and their connections. Running these algorithms simultaneously is about 15% more accurate than the N-gram algorithm and about 10 % more efficient and accurate than the others algorithm. The operation of the algorithm for linear search of tags in the dictionary and the operation of the Noisy Channel algorithm using the BK-tree are also analyzed. Thanks to which it was possible to achieve significant advantages in the work algorithm, instead of a linear view of the search time, a logarithmic dependence was obtained. A system of synchronous and asynchronous methods also works. At first, the difference is not visible, but the more requests, the faster the system loads and tries to respond to them more by displaying from asynchronous methods.