情绪文本检测与长短期记忆 (LSTM)

Muhamad Dwirizqy Wimbassa, Taswiyah Marsyah Noor, Salma Yasara, Vannesha Vannesha, Tubagus Muhammad Arsyah, Abdiansah Abdiansah
{"title":"情绪文本检测与长短期记忆 (LSTM)","authors":"Muhamad Dwirizqy Wimbassa, Taswiyah Marsyah Noor, Salma Yasara, Vannesha Vannesha, Tubagus Muhammad Arsyah, Abdiansah Abdiansah","doi":"10.22441/format.2023.v12.i2.009","DOIUrl":null,"url":null,"abstract":"Emotional Text Detection is a technique in natural language processing that aims to identify the emotions contained in conversations or text messages. The LSTM (Long Short-Term Memory) method is one of the techniques used in natural language processing to model and predict sequential data. In this study, we propose the use of the LSTM method for emotion detection in conversation. The dataset used is a conversational dataset that contains positive, negative, and neutral emotions. We process datasets using data pre-processing techniques such as tokenization, data cleansing and one-hot encoding. Then, we train the LSTM model on the processed dataset and obtain evaluation results using accuracy metrics. The experimental results show that the LSTM model can be used to detect emotions in conversation with a good degree of accuracy. In addition, we also conducted an analysis on the prediction results of the model and showed that the LSTM model can correctly identify emotions. In conclusion, the LSTM method can be used to detect emotions in conversation with a good degree of accuracy. This method can be used to improve user experience in chat applications and increase the effectiveness of human and machine interactions.","PeriodicalId":381291,"journal":{"name":"Format : Jurnal Ilmiah Teknik Informatika","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emotional Text Detection dengan Long Short Term Memory (LSTM)\",\"authors\":\"Muhamad Dwirizqy Wimbassa, Taswiyah Marsyah Noor, Salma Yasara, Vannesha Vannesha, Tubagus Muhammad Arsyah, Abdiansah Abdiansah\",\"doi\":\"10.22441/format.2023.v12.i2.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emotional Text Detection is a technique in natural language processing that aims to identify the emotions contained in conversations or text messages. The LSTM (Long Short-Term Memory) method is one of the techniques used in natural language processing to model and predict sequential data. In this study, we propose the use of the LSTM method for emotion detection in conversation. The dataset used is a conversational dataset that contains positive, negative, and neutral emotions. We process datasets using data pre-processing techniques such as tokenization, data cleansing and one-hot encoding. Then, we train the LSTM model on the processed dataset and obtain evaluation results using accuracy metrics. The experimental results show that the LSTM model can be used to detect emotions in conversation with a good degree of accuracy. In addition, we also conducted an analysis on the prediction results of the model and showed that the LSTM model can correctly identify emotions. In conclusion, the LSTM method can be used to detect emotions in conversation with a good degree of accuracy. This method can be used to improve user experience in chat applications and increase the effectiveness of human and machine interactions.\",\"PeriodicalId\":381291,\"journal\":{\"name\":\"Format : Jurnal Ilmiah Teknik Informatika\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Format : Jurnal Ilmiah Teknik Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22441/format.2023.v12.i2.009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Format : Jurnal Ilmiah Teknik Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22441/format.2023.v12.i2.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

情感文本检测是自然语言处理中的一种技术,旨在识别对话或文本信息中包含的情感。LSTM(长短期记忆)方法是自然语言处理中用于建模和预测连续数据的技术之一。在本研究中,我们建议使用 LSTM 方法来检测对话中的情绪。所使用的数据集是包含正面、负面和中性情绪的会话数据集。我们使用标记化、数据清洗和单次编码等数据预处理技术来处理数据集。然后,我们在处理过的数据集上训练 LSTM 模型,并使用准确度指标得出评估结果。实验结果表明,LSTM 模型可用于检测对话中的情绪,且准确度较高。此外,我们还对模型的预测结果进行了分析,结果表明 LSTM 模型能够正确识别情绪。总之,LSTM 方法可用于检测对话中的情绪,且准确度较高。这种方法可用于改善聊天应用中的用户体验,提高人机交互的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emotional Text Detection dengan Long Short Term Memory (LSTM)
Emotional Text Detection is a technique in natural language processing that aims to identify the emotions contained in conversations or text messages. The LSTM (Long Short-Term Memory) method is one of the techniques used in natural language processing to model and predict sequential data. In this study, we propose the use of the LSTM method for emotion detection in conversation. The dataset used is a conversational dataset that contains positive, negative, and neutral emotions. We process datasets using data pre-processing techniques such as tokenization, data cleansing and one-hot encoding. Then, we train the LSTM model on the processed dataset and obtain evaluation results using accuracy metrics. The experimental results show that the LSTM model can be used to detect emotions in conversation with a good degree of accuracy. In addition, we also conducted an analysis on the prediction results of the model and showed that the LSTM model can correctly identify emotions. In conclusion, the LSTM method can be used to detect emotions in conversation with a good degree of accuracy. This method can be used to improve user experience in chat applications and increase the effectiveness of human and machine interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analisis Fitur Pada Citra Gestur Tangan Sistem Isyarat Bahasa Indonesia Emotional Text Detection dengan Long Short Term Memory (LSTM) Penerapan Metode Cosine Similarity Dalam Mendeteksi Plagiarisme Pada Jurnal Implementasi Algoritma Searching Untuk Pencarian Produk dan SMTP Sistem Pengiriman Email pada Toko Ono Celluler Optimalisasi Overload Traffic Dan Request Cloud Environment Menggunakan Metode Content Delivery Network Dan Private Zone Di RCTI+
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1