通过非线性散射实现量子和经典信道的窃听器定位

A. Popp, F. Sedlmeir, B. Stiller, C. Marquardt
{"title":"通过非线性散射实现量子和经典信道的窃听器定位","authors":"A. Popp, F. Sedlmeir, B. Stiller, C. Marquardt","doi":"10.1364/opticaq.502944","DOIUrl":null,"url":null,"abstract":"Optical fiber networks are part of important critical infrastructure and known to be prone to eavesdropping attacks. Hence cryptographic methods have to be used to protect communication. Quantum key distribution (QKD), at its core, offers information theoretical security based on the laws of physics. In deployments one has to take into account practical security and resilience. The latter includes the localization of a possible eavesdropper after an anomaly has been detected by the QKD system to avoid denial-of-service. Here, we present a novel approach to eavesdropper location that can be employed in quantum as well as classical channels using stimulated Brillouin scattering. The tight localization of the acoustic wave inside the fiber channel using correlated pump and probe waves allows to discover the coordinates of a potential threat within centimeters. We demonstrate that our approach outperforms conventional OTDR in the task of localizing an evanescent outcoupling of 1% with cm precision inside standard optical fibers. The system is furthermore able to clearly distinguish commercially available standard SMF28 from different manufacturers, paving the way for fingerprinted fibers in high security environments.","PeriodicalId":501828,"journal":{"name":"Optica Quantum","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eavesdropper localization for quantum and classical channels via nonlinear scattering\",\"authors\":\"A. Popp, F. Sedlmeir, B. Stiller, C. Marquardt\",\"doi\":\"10.1364/opticaq.502944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical fiber networks are part of important critical infrastructure and known to be prone to eavesdropping attacks. Hence cryptographic methods have to be used to protect communication. Quantum key distribution (QKD), at its core, offers information theoretical security based on the laws of physics. In deployments one has to take into account practical security and resilience. The latter includes the localization of a possible eavesdropper after an anomaly has been detected by the QKD system to avoid denial-of-service. Here, we present a novel approach to eavesdropper location that can be employed in quantum as well as classical channels using stimulated Brillouin scattering. The tight localization of the acoustic wave inside the fiber channel using correlated pump and probe waves allows to discover the coordinates of a potential threat within centimeters. We demonstrate that our approach outperforms conventional OTDR in the task of localizing an evanescent outcoupling of 1% with cm precision inside standard optical fibers. The system is furthermore able to clearly distinguish commercially available standard SMF28 from different manufacturers, paving the way for fingerprinted fibers in high security environments.\",\"PeriodicalId\":501828,\"journal\":{\"name\":\"Optica Quantum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optica Quantum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/opticaq.502944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/opticaq.502944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光纤网络是重要关键基础设施的一部分,容易受到窃听攻击。因此,必须使用加密方法来保护通信。量子密钥分发(QKD)的核心是提供基于物理定律的信息理论安全性。在部署过程中,我们必须考虑到实际安全性和弹性。后者包括在 QKD 系统检测到异常后定位可能的窃听者,以避免拒绝服务。在这里,我们提出了一种新的窃听者定位方法,这种方法可以在量子和经典信道中使用受激布里渊散射。利用相关的泵波和探针波对光纤通道内的声波进行紧密定位,可以在几厘米内发现潜在威胁的坐标。我们证明,在标准光纤内以厘米为单位精确定位 1%的蒸发外耦合时,我们的方法优于传统的 OTDR。此外,该系统还能清楚地区分来自不同制造商的市售标准 SMF28,为高安全性环境中的指纹光纤铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Eavesdropper localization for quantum and classical channels via nonlinear scattering
Optical fiber networks are part of important critical infrastructure and known to be prone to eavesdropping attacks. Hence cryptographic methods have to be used to protect communication. Quantum key distribution (QKD), at its core, offers information theoretical security based on the laws of physics. In deployments one has to take into account practical security and resilience. The latter includes the localization of a possible eavesdropper after an anomaly has been detected by the QKD system to avoid denial-of-service. Here, we present a novel approach to eavesdropper location that can be employed in quantum as well as classical channels using stimulated Brillouin scattering. The tight localization of the acoustic wave inside the fiber channel using correlated pump and probe waves allows to discover the coordinates of a potential threat within centimeters. We demonstrate that our approach outperforms conventional OTDR in the task of localizing an evanescent outcoupling of 1% with cm precision inside standard optical fibers. The system is furthermore able to clearly distinguish commercially available standard SMF28 from different manufacturers, paving the way for fingerprinted fibers in high security environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Shaping entangled photons through arbitrary scattering media using an advanced wave beacon High-dimensional quantum correlation measurements with an adaptively gated hybrid single-photon camera Toward heralded distribution of polarization entanglement Distribution of telecom entangled photons through a 7.7 km antiresonant hollow-core fiber Multifold enhancement of quantum SNR by using an EMCCD as a photon number resolving device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1