k 类工具变量量化回归

IF 1.9 4区 经济学 Q2 ECONOMICS Empirical Economics Pub Date : 2024-01-05 DOI:10.1007/s00181-023-02543-2
David M. Kaplan, Xin Liu
{"title":"k 类工具变量量化回归","authors":"David M. Kaplan, Xin Liu","doi":"10.1007/s00181-023-02543-2","DOIUrl":null,"url":null,"abstract":"<p>With mean instrumental variables regression, <i>k</i>-class estimators have the potential to reduce bias, which is larger with weak instruments. With instrumental variables quantile regression, weak instrument-robust estimation is even more important because there is less guidance for assessing instrument strength. Motivated by this, we introduce an analogous <i>k</i>-class of estimators for instrumental variables quantile regression. We show the first-order asymptotic distribution under strong instruments is equivalent for all conventional choices of <i>k</i>. We evaluate finite-sample median bias in simulations for a variety of <i>k</i>, including the <i>k</i> for the conventional <i>k</i>-class estimator corresponding to limited information maximum likelihood (LIML). Computation is fast for all <i>k</i>, and compared to the <span>\\(k=1\\)</span> benchmark estimator (analogous to 2SLS), using the LIML <i>k</i> reliably reduces median bias in a variety of data-generating processes, especially when the degree of overidentification is larger. We also revisit some empirical estimates of consumption Euler equations derived from quantile utility maximization. All code is provided online (https://kaplandm.github.io).\n</p>","PeriodicalId":11642,"journal":{"name":"Empirical Economics","volume":"40 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"k-Class instrumental variables quantile regression\",\"authors\":\"David M. Kaplan, Xin Liu\",\"doi\":\"10.1007/s00181-023-02543-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With mean instrumental variables regression, <i>k</i>-class estimators have the potential to reduce bias, which is larger with weak instruments. With instrumental variables quantile regression, weak instrument-robust estimation is even more important because there is less guidance for assessing instrument strength. Motivated by this, we introduce an analogous <i>k</i>-class of estimators for instrumental variables quantile regression. We show the first-order asymptotic distribution under strong instruments is equivalent for all conventional choices of <i>k</i>. We evaluate finite-sample median bias in simulations for a variety of <i>k</i>, including the <i>k</i> for the conventional <i>k</i>-class estimator corresponding to limited information maximum likelihood (LIML). Computation is fast for all <i>k</i>, and compared to the <span>\\\\(k=1\\\\)</span> benchmark estimator (analogous to 2SLS), using the LIML <i>k</i> reliably reduces median bias in a variety of data-generating processes, especially when the degree of overidentification is larger. We also revisit some empirical estimates of consumption Euler equations derived from quantile utility maximization. All code is provided online (https://kaplandm.github.io).\\n</p>\",\"PeriodicalId\":11642,\"journal\":{\"name\":\"Empirical Economics\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Empirical Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1007/s00181-023-02543-2\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Empirical Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s00181-023-02543-2","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

对于均值工具变量回归,k 级估计器有可能减少偏差,而在工具较弱的情况下,偏差会更大。对于工具变量量化回归,弱工具稳健估计更为重要,因为评估工具强度的指导较少。受此启发,我们为工具变量量化回归引入了类似的 k 类估计器。我们在模拟中评估了各种 k 的有限样本中位偏差,包括与有限信息最大似然法(LIML)相对应的传统 k 类估计器的 k。所有 k 的计算速度都很快,与基准估计器(类似于 2SLS)相比,使用 LIML k 可以可靠地减少各种数据生成过程中的中位偏差,尤其是当过度识别程度较大时。我们还重新审视了从量子效用最大化推导出的消费欧拉方程的一些经验估计值。所有代码均在线提供(https://kaplandm.github.io)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
k-Class instrumental variables quantile regression

With mean instrumental variables regression, k-class estimators have the potential to reduce bias, which is larger with weak instruments. With instrumental variables quantile regression, weak instrument-robust estimation is even more important because there is less guidance for assessing instrument strength. Motivated by this, we introduce an analogous k-class of estimators for instrumental variables quantile regression. We show the first-order asymptotic distribution under strong instruments is equivalent for all conventional choices of k. We evaluate finite-sample median bias in simulations for a variety of k, including the k for the conventional k-class estimator corresponding to limited information maximum likelihood (LIML). Computation is fast for all k, and compared to the \(k=1\) benchmark estimator (analogous to 2SLS), using the LIML k reliably reduces median bias in a variety of data-generating processes, especially when the degree of overidentification is larger. We also revisit some empirical estimates of consumption Euler equations derived from quantile utility maximization. All code is provided online (https://kaplandm.github.io).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
157
期刊介绍: Empirical Economics publishes high quality papers using econometric or statistical methods to fill the gap between economic theory and observed data. Papers explore such topics as estimation of established relationships between economic variables, testing of hypotheses derived from economic theory, treatment effect estimation, policy evaluation, simulation, forecasting, as well as econometric methods and measurement. Empirical Economics emphasizes the replicability of empirical results. Replication studies of important results in the literature - both positive and negative results - may be published as short papers in Empirical Economics. Authors of all accepted papers and replications are required to submit all data and codes prior to publication (for more details, see: Instructions for Authors).The journal follows a single blind review procedure. In order to ensure the high quality of the journal and an efficient editorial process, a substantial number of submissions that have very poor chances of receiving positive reviews are routinely rejected without sending the papers for review.Officially cited as: Empir Econ
期刊最新文献
Macroeconomic effects of monetary policy in Japan: an analysis using interest rate futures surprises Stochastic instability: a dynamic quantile approach Revisiting precious metal mining stocks and precious metals as hedge, diversifiers and safe-havens: a multidimensional scaling and wavelet quantile correlation perspective Euro area inflation differentials: the role of fiscal policies revisited Instrumental variable estimation with observed and unobserved heterogeneity of the treatment and instrument effect: a latent class approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1