条件期望值的局部线性函数 kNN 估计器:邻域数的均匀一致性

Pub Date : 2024-01-06 DOI:10.1007/s00184-023-00942-0
Ibrahim M. Almanjahie, Salim Bouzebda, Zoulikha Kaid, Ali Laksaci
{"title":"条件期望值的局部线性函数 kNN 估计器:邻域数的均匀一致性","authors":"Ibrahim M. Almanjahie, Salim Bouzebda, Zoulikha Kaid, Ali Laksaci","doi":"10.1007/s00184-023-00942-0","DOIUrl":null,"url":null,"abstract":"<p>The main purpose of the present paper is to investigate the problem of the nonparametric estimation of the expectile regression in which the response variable is scalar while the covariate is a random function. More precisely, an estimator is constructed by using the local linear <i>k</i> Nearest Neighbor procedures (<i>k</i>NN). The main contribution of this study is the establishment of the Uniform consistency in Number of Neighbors of the constructed estimators. These results are established under fairly general structural conditions on the classes of functions and the underlying models. The usefulness of our result for the smoothing parameter automatic selection is discussed. Some simulation studies are carried out to show the finite sample performances of the <i>k</i>NN estimator. The theoretical uniform consistency results, established in this paper, are (or will be) key tools for many further developments in functional data analysis.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The local linear functional kNN estimator of the conditional expectile: uniform consistency in number of neighbors\",\"authors\":\"Ibrahim M. Almanjahie, Salim Bouzebda, Zoulikha Kaid, Ali Laksaci\",\"doi\":\"10.1007/s00184-023-00942-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The main purpose of the present paper is to investigate the problem of the nonparametric estimation of the expectile regression in which the response variable is scalar while the covariate is a random function. More precisely, an estimator is constructed by using the local linear <i>k</i> Nearest Neighbor procedures (<i>k</i>NN). The main contribution of this study is the establishment of the Uniform consistency in Number of Neighbors of the constructed estimators. These results are established under fairly general structural conditions on the classes of functions and the underlying models. The usefulness of our result for the smoothing parameter automatic selection is discussed. Some simulation studies are carried out to show the finite sample performances of the <i>k</i>NN estimator. The theoretical uniform consistency results, established in this paper, are (or will be) key tools for many further developments in functional data analysis.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00184-023-00942-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-023-00942-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是研究响应变量为标量而协变量为随机函数的期望回归的非参数估计问题。更确切地说,本文使用局部线性 k 近邻程序(kNN)构建了一个估计器。本研究的主要贡献在于建立了所构建估计子的 "近邻数均匀一致性"。这些结果是在函数类别和基础模型的一般结构条件下建立的。讨论了我们的结果对平滑参数自动选择的有用性。我们还进行了一些模拟研究,以显示 kNN 估计器的有限样本性能。本文建立的理论统一一致性结果是(或将是)函数数据分析领域进一步发展的关键工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
The local linear functional kNN estimator of the conditional expectile: uniform consistency in number of neighbors

The main purpose of the present paper is to investigate the problem of the nonparametric estimation of the expectile regression in which the response variable is scalar while the covariate is a random function. More precisely, an estimator is constructed by using the local linear k Nearest Neighbor procedures (kNN). The main contribution of this study is the establishment of the Uniform consistency in Number of Neighbors of the constructed estimators. These results are established under fairly general structural conditions on the classes of functions and the underlying models. The usefulness of our result for the smoothing parameter automatic selection is discussed. Some simulation studies are carried out to show the finite sample performances of the kNN estimator. The theoretical uniform consistency results, established in this paper, are (or will be) key tools for many further developments in functional data analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1