用于逆向学习的希尔伯特尺度非线性提霍诺夫正则化

IF 1.8 2区 数学 Q1 MATHEMATICS Journal of Complexity Pub Date : 2024-01-06 DOI:10.1016/j.jco.2024.101824
Abhishake Rastogi
{"title":"用于逆向学习的希尔伯特尺度非线性提霍诺夫正则化","authors":"Abhishake Rastogi","doi":"10.1016/j.jco.2024.101824","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study Tikhonov regularization scheme in Hilbert scales for a nonlinear statistical inverse problem with general noise. The regularizing norm in this scheme is stronger than the norm in the Hilbert space. We focus on developing a theoretical analysis for this scheme based on conditional stability estimates. We utilize the concept of the distance function to establish high probability estimates of the direct and reconstruction errors in the Reproducing Kernel Hilbert space setting. Furthermore, explicit rates of convergence in terms of sample size are established for the oversmoothing case and the regular case over the regularity class defined through an appropriate source condition. Our results improve upon and generalize previous results obtained in related settings.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885064X24000013/pdfft?md5=1a65eb323b09b712bcf07de5eb47b8eb&pid=1-s2.0-S0885064X24000013-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Tikhonov regularization in Hilbert scales for inverse learning\",\"authors\":\"Abhishake Rastogi\",\"doi\":\"10.1016/j.jco.2024.101824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study Tikhonov regularization scheme in Hilbert scales for a nonlinear statistical inverse problem with general noise. The regularizing norm in this scheme is stronger than the norm in the Hilbert space. We focus on developing a theoretical analysis for this scheme based on conditional stability estimates. We utilize the concept of the distance function to establish high probability estimates of the direct and reconstruction errors in the Reproducing Kernel Hilbert space setting. Furthermore, explicit rates of convergence in terms of sample size are established for the oversmoothing case and the regular case over the regularity class defined through an appropriate source condition. Our results improve upon and generalize previous results obtained in related settings.</p></div>\",\"PeriodicalId\":50227,\"journal\":{\"name\":\"Journal of Complexity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0885064X24000013/pdfft?md5=1a65eb323b09b712bcf07de5eb47b8eb&pid=1-s2.0-S0885064X24000013-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Complexity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X24000013\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X24000013","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了希尔伯特尺度下的 Tikhonov 正则化方案,用于解决具有一般噪声的非线性统计逆问题。该方案中的正则规范比希尔伯特空间中的规范更强。我们的重点是在条件稳定性估计的基础上对该方案进行理论分析。我们利用距离函数的概念,建立了重现核希尔伯特空间环境下直接误差和重建误差的高概率估计。此外,我们还通过适当的源条件,在正则性类别上为过平滑情况和正则情况建立了明确的样本量收敛率。我们的结果改进并概括了之前在相关环境中获得的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear Tikhonov regularization in Hilbert scales for inverse learning

In this paper, we study Tikhonov regularization scheme in Hilbert scales for a nonlinear statistical inverse problem with general noise. The regularizing norm in this scheme is stronger than the norm in the Hilbert space. We focus on developing a theoretical analysis for this scheme based on conditional stability estimates. We utilize the concept of the distance function to establish high probability estimates of the direct and reconstruction errors in the Reproducing Kernel Hilbert space setting. Furthermore, explicit rates of convergence in terms of sample size are established for the oversmoothing case and the regular case over the regularity class defined through an appropriate source condition. Our results improve upon and generalize previous results obtained in related settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Complexity
Journal of Complexity 工程技术-计算机:理论方法
CiteScore
3.10
自引率
17.60%
发文量
57
审稿时长
>12 weeks
期刊介绍: The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited. Areas Include: • Approximation theory • Biomedical computing • Compressed computing and sensing • Computational finance • Computational number theory • Computational stochastics • Control theory • Cryptography • Design of experiments • Differential equations • Discrete problems • Distributed and parallel computation • High and infinite-dimensional problems • Information-based complexity • Inverse and ill-posed problems • Machine learning • Markov chain Monte Carlo • Monte Carlo and quasi-Monte Carlo • Multivariate integration and approximation • Noisy data • Nonlinear and algebraic equations • Numerical analysis • Operator equations • Optimization • Quantum computing • Scientific computation • Tractability of multivariate problems • Vision and image understanding.
期刊最新文献
Stefan Heinrich is the Winner of the 2024 Best Paper Award of the Journal of Complexity Best Paper Award of the Journal of Complexity Matthieu Dolbeault is the winner of the 2024 Joseph F. Traub Information-Based Complexity Young Researcher Award Optimal recovery of linear operators from information of random functions Intractability results for integration in tensor product spaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1