Jishnu N. Thekkeppattu;Randall B. Wayth;Marcin Sokołowski
{"title":"利用全息技术校准 SKA-Low 原型站","authors":"Jishnu N. Thekkeppattu;Randall B. Wayth;Marcin Sokołowski","doi":"10.1029/2023RS007847","DOIUrl":null,"url":null,"abstract":"Performance of digitally beamformed phased arrays relies on accurate calibration of the array by obtaining gains of each antenna in the array. The stations of the Square Kilometer Array-Low (SKA-Low) are such digital arrays, where the station calibration is currently performed using conventional interferometric techniques. An alternative calibration technique similar to holography of dish based telescopes has been suggested in the past. In this paper, we develop a novel mathematical framework for holography employing tensors, which are multi-way data structures. Self-holography using a reference beam formed with the station under test itself and cross-holography using a different station to obtain the reference beam are unified under the same formalism. Besides, the relation between the two apparently distinct holographic approaches in the literature for phased arrays is shown, and we show that under certain conditions the two methods yield the same results. We test the various holographic techniques on an SKA-Low prototype station Aperture Array Verification System 2 (AAVS2) with the Sun as the calibrator. We perform self-holography of AAVS2 and cross-holography with simultaneous observations carried out with another station Engineering Development Array 2. We find the results from the holographic techniques to be consistent among themselves as well as with a more conventional calibration technique.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 1","pages":"1-14"},"PeriodicalIF":1.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calibration of an SKA-low prototype station using holographic techniques\",\"authors\":\"Jishnu N. Thekkeppattu;Randall B. Wayth;Marcin Sokołowski\",\"doi\":\"10.1029/2023RS007847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performance of digitally beamformed phased arrays relies on accurate calibration of the array by obtaining gains of each antenna in the array. The stations of the Square Kilometer Array-Low (SKA-Low) are such digital arrays, where the station calibration is currently performed using conventional interferometric techniques. An alternative calibration technique similar to holography of dish based telescopes has been suggested in the past. In this paper, we develop a novel mathematical framework for holography employing tensors, which are multi-way data structures. Self-holography using a reference beam formed with the station under test itself and cross-holography using a different station to obtain the reference beam are unified under the same formalism. Besides, the relation between the two apparently distinct holographic approaches in the literature for phased arrays is shown, and we show that under certain conditions the two methods yield the same results. We test the various holographic techniques on an SKA-Low prototype station Aperture Array Verification System 2 (AAVS2) with the Sun as the calibrator. We perform self-holography of AAVS2 and cross-holography with simultaneous observations carried out with another station Engineering Development Array 2. We find the results from the holographic techniques to be consistent among themselves as well as with a more conventional calibration technique.\",\"PeriodicalId\":49638,\"journal\":{\"name\":\"Radio Science\",\"volume\":\"59 1\",\"pages\":\"1-14\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radio Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10422941/\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radio Science","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10422941/","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Calibration of an SKA-low prototype station using holographic techniques
Performance of digitally beamformed phased arrays relies on accurate calibration of the array by obtaining gains of each antenna in the array. The stations of the Square Kilometer Array-Low (SKA-Low) are such digital arrays, where the station calibration is currently performed using conventional interferometric techniques. An alternative calibration technique similar to holography of dish based telescopes has been suggested in the past. In this paper, we develop a novel mathematical framework for holography employing tensors, which are multi-way data structures. Self-holography using a reference beam formed with the station under test itself and cross-holography using a different station to obtain the reference beam are unified under the same formalism. Besides, the relation between the two apparently distinct holographic approaches in the literature for phased arrays is shown, and we show that under certain conditions the two methods yield the same results. We test the various holographic techniques on an SKA-Low prototype station Aperture Array Verification System 2 (AAVS2) with the Sun as the calibrator. We perform self-holography of AAVS2 and cross-holography with simultaneous observations carried out with another station Engineering Development Array 2. We find the results from the holographic techniques to be consistent among themselves as well as with a more conventional calibration technique.
期刊介绍:
Radio Science (RDS) publishes original scientific contributions on radio-frequency electromagnetic-propagation and its applications. Contributions covering measurement, modelling, prediction and forecasting techniques pertinent to fields and waves - including antennas, signals and systems, the terrestrial and space environment and radio propagation problems in radio astronomy - are welcome. Contributions may address propagation through, interaction with, and remote sensing of structures, geophysical media, plasmas, and materials, as well as the application of radio frequency electromagnetic techniques to remote sensing of the Earth and other bodies in the solar system.