{"title":"利用进化学习进行跨域推荐的新方法","authors":"Yi-Cheng Chen, Wang-Chien Lee","doi":"10.1145/3639567","DOIUrl":null,"url":null,"abstract":"<p>In this “info-plosion” era, recommendation systems (or recommenders) play a significant role in finding interesting items in the surge of on-line digital activities and e-commerce. Several techniques have been widely applied for recommendation systems, but the cold start and sparsity problems remain a major challenge. The cold start problem occurs when generating recommendations for new users and items without sufficient information. Sparsity refers to the problem of having a large amount of users and items but with few transactions or interactions. In this paper, a novel cross-domain recommendation model, Cross-Domain Evolution Learning Recommendation (abbreviated as CD-ELR), is developed to communicate the information from different domains in order to tackle the cold start and sparsity issues by integrating matrix factorization and recurrent neural network. We introduce an evolutionary concept to describe the preference variation of users over time. Furthermore, several optimization methods are developed for combining the domain features for precision recommendation. Experimental results show that CD-ELR outperforms existing state-of-the-art recommendation baselines. Finally, we conduct experiments on several real-world datasets to demonstrate the practicability of the proposed CD-ELR.</p>","PeriodicalId":50911,"journal":{"name":"ACM Transactions on Internet Technology","volume":"63 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Cross-Domain Recommendation with Evolution Learning\",\"authors\":\"Yi-Cheng Chen, Wang-Chien Lee\",\"doi\":\"10.1145/3639567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this “info-plosion” era, recommendation systems (or recommenders) play a significant role in finding interesting items in the surge of on-line digital activities and e-commerce. Several techniques have been widely applied for recommendation systems, but the cold start and sparsity problems remain a major challenge. The cold start problem occurs when generating recommendations for new users and items without sufficient information. Sparsity refers to the problem of having a large amount of users and items but with few transactions or interactions. In this paper, a novel cross-domain recommendation model, Cross-Domain Evolution Learning Recommendation (abbreviated as CD-ELR), is developed to communicate the information from different domains in order to tackle the cold start and sparsity issues by integrating matrix factorization and recurrent neural network. We introduce an evolutionary concept to describe the preference variation of users over time. Furthermore, several optimization methods are developed for combining the domain features for precision recommendation. Experimental results show that CD-ELR outperforms existing state-of-the-art recommendation baselines. Finally, we conduct experiments on several real-world datasets to demonstrate the practicability of the proposed CD-ELR.</p>\",\"PeriodicalId\":50911,\"journal\":{\"name\":\"ACM Transactions on Internet Technology\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Internet Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3639567\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3639567","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Novel Cross-Domain Recommendation with Evolution Learning
In this “info-plosion” era, recommendation systems (or recommenders) play a significant role in finding interesting items in the surge of on-line digital activities and e-commerce. Several techniques have been widely applied for recommendation systems, but the cold start and sparsity problems remain a major challenge. The cold start problem occurs when generating recommendations for new users and items without sufficient information. Sparsity refers to the problem of having a large amount of users and items but with few transactions or interactions. In this paper, a novel cross-domain recommendation model, Cross-Domain Evolution Learning Recommendation (abbreviated as CD-ELR), is developed to communicate the information from different domains in order to tackle the cold start and sparsity issues by integrating matrix factorization and recurrent neural network. We introduce an evolutionary concept to describe the preference variation of users over time. Furthermore, several optimization methods are developed for combining the domain features for precision recommendation. Experimental results show that CD-ELR outperforms existing state-of-the-art recommendation baselines. Finally, we conduct experiments on several real-world datasets to demonstrate the practicability of the proposed CD-ELR.
期刊介绍:
ACM Transactions on Internet Technology (TOIT) brings together many computing disciplines including computer software engineering, computer programming languages, middleware, database management, security, knowledge discovery and data mining, networking and distributed systems, communications, performance and scalability etc. TOIT will cover the results and roles of the individual disciplines and the relationshipsamong them.