{"title":"研究长非编码 roX RNA 在维持黑腹果蝇剂量补偿复合物中的作用","authors":"V. A. Babosha, P. G. Georgiev, O. G. Maksimenko","doi":"10.1134/S160767292370062X","DOIUrl":null,"url":null,"abstract":"<p>The proteins MSL1, MSL2, MSL3, MLE, and MOF and noncoding RNAs <i>roX1</i> and <i>roX2</i> form the <i>Drosophila</i> dosage compensation complex (DCC), which specifically binds to the X chromosome of males. It is known that noncoding RNA roX are primary component of the DCC in the process of assembly and spreading of the complex among the X chromosome of males. However, the role of this RNA in maintaining the structure of the already assembled complex remains unclear. In this work, we have shown that the full-assembled dosage compensation complex dissociates rather weakly when treated with RNases: the MLE helicase is effectively released from the complex, and the remaining protein components (MSL1, MSL2, and MSL3) undergo partial disassembly and continue to be part of subcomplexes. The results confirm the importance of the noncoding <i>roX2</i> RNA not only in the processes of initiation of DCC assembly but also at the stage of maintaining the structure of the already assembled complex.</p>","PeriodicalId":529,"journal":{"name":"Doklady Biochemistry and Biophysics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the Role of Long Noncoding roX RNA in Maintaining of the Dosage Compensation Complex in Drosophila melanogaster\",\"authors\":\"V. A. Babosha, P. G. Georgiev, O. G. Maksimenko\",\"doi\":\"10.1134/S160767292370062X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The proteins MSL1, MSL2, MSL3, MLE, and MOF and noncoding RNAs <i>roX1</i> and <i>roX2</i> form the <i>Drosophila</i> dosage compensation complex (DCC), which specifically binds to the X chromosome of males. It is known that noncoding RNA roX are primary component of the DCC in the process of assembly and spreading of the complex among the X chromosome of males. However, the role of this RNA in maintaining the structure of the already assembled complex remains unclear. In this work, we have shown that the full-assembled dosage compensation complex dissociates rather weakly when treated with RNases: the MLE helicase is effectively released from the complex, and the remaining protein components (MSL1, MSL2, and MSL3) undergo partial disassembly and continue to be part of subcomplexes. The results confirm the importance of the noncoding <i>roX2</i> RNA not only in the processes of initiation of DCC assembly but also at the stage of maintaining the structure of the already assembled complex.</p>\",\"PeriodicalId\":529,\"journal\":{\"name\":\"Doklady Biochemistry and Biophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Biochemistry and Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S160767292370062X\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1134/S160767292370062X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Study of the Role of Long Noncoding roX RNA in Maintaining of the Dosage Compensation Complex in Drosophila melanogaster
The proteins MSL1, MSL2, MSL3, MLE, and MOF and noncoding RNAs roX1 and roX2 form the Drosophila dosage compensation complex (DCC), which specifically binds to the X chromosome of males. It is known that noncoding RNA roX are primary component of the DCC in the process of assembly and spreading of the complex among the X chromosome of males. However, the role of this RNA in maintaining the structure of the already assembled complex remains unclear. In this work, we have shown that the full-assembled dosage compensation complex dissociates rather weakly when treated with RNases: the MLE helicase is effectively released from the complex, and the remaining protein components (MSL1, MSL2, and MSL3) undergo partial disassembly and continue to be part of subcomplexes. The results confirm the importance of the noncoding roX2 RNA not only in the processes of initiation of DCC assembly but also at the stage of maintaining the structure of the already assembled complex.
期刊介绍:
Doklady Biochemistry and Biophysics is a journal consisting of English translations of articles published in Russian in biochemistry and biophysics sections of the Russian-language journal Doklady Akademii Nauk. The journal''s goal is to publish the most significant new research in biochemistry and biophysics carried out in Russia today or in collaboration with Russian authors. The journal accepts only articles in the Russian language that are submitted or recommended by acting Russian or foreign members of the Russian Academy of Sciences. The journal does not accept direct submissions in English.