Jonas Högberg, Christoffer Andersén, Tobias Rydén, Jakob H Lagerlöf
{"title":"使用蒙特卡洛生成的 SPECT 图像测定甲状腺有效容积的 Otsu 方法和改良的 Chan-Vese 方法的比较。","authors":"Jonas Högberg, Christoffer Andersén, Tobias Rydén, Jakob H Lagerlöf","doi":"10.1186/s40658-023-00609-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The Otsu method and the Chan-Vese model are two methods proven to perform well in determining volumes of different organs and specific tissue fractions. This study aimed to compare the performance of the two methods regarding segmentation of active thyroid gland volumes, reflecting different clinical settings by varying the parameters: gland size, gland activity concentration, background activity concentration and gland activity concentration heterogeneity.</p><p><strong>Methods: </strong>A computed tomography was performed on three playdough thyroid phantoms with volumes 20, 35 and 50 ml. The image data were separated into playdough and water based on Hounsfield values. Sixty single photon emission computed tomography (SPECT) projections were simulated by Monte Carlo method with isotope Technetium-99 m ([Formula: see text]Tc). Linear combinations of SPECT images were made, generating 12 different combinations of volume and background: each with both homogeneous thyroid activity concentration and three hotspots of different relative activity concentrations (48 SPECT images in total). The relative background levels chosen were 5 %, 10 %, 15 % and 20 % of the phantom activity concentration and the hotspot activities were 100 % (homogeneous case) 150 %, 200 % and 250 %. Poisson noise, (coefficient of variation of 0.8 at a 20 % background level, scattering excluded), was added before reconstruction was done with the Monte Carlo-based SPECT reconstruction algorithm Sahlgrenska Academy reconstruction code (SARec). Two different segmentation algorithms were applied: Otsu's threshold selection method and an adaptation of the Chan-Vese model for active contours without edges; the results were evaluated concerning relative volume, mean absolute error and standard deviation per thyroid volume, as well as dice similarity coefficient.</p><p><strong>Results: </strong>Both methods segment the images well and deviate similarly from the true volumes. They seem to slightly overestimate small volumes and underestimate large ones. Different background levels affect the two methods similarly as well. However, the Chan-Vese model deviates less and paired t-testing showed significant difference between distributions of dice similarity coefficients (p-value [Formula: see text]).</p><p><strong>Conclusions: </strong>The investigations indicate that the Chan-Vese model performs better and is slightly more robust, while being more challenging to implement and use clinically. There is a trade-off between performance and user-friendliness.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"6"},"PeriodicalIF":3.0000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10774246/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparison of Otsu and an adapted Chan-Vese method to determine thyroid active volume using Monte Carlo generated SPECT images.\",\"authors\":\"Jonas Högberg, Christoffer Andersén, Tobias Rydén, Jakob H Lagerlöf\",\"doi\":\"10.1186/s40658-023-00609-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The Otsu method and the Chan-Vese model are two methods proven to perform well in determining volumes of different organs and specific tissue fractions. This study aimed to compare the performance of the two methods regarding segmentation of active thyroid gland volumes, reflecting different clinical settings by varying the parameters: gland size, gland activity concentration, background activity concentration and gland activity concentration heterogeneity.</p><p><strong>Methods: </strong>A computed tomography was performed on three playdough thyroid phantoms with volumes 20, 35 and 50 ml. The image data were separated into playdough and water based on Hounsfield values. Sixty single photon emission computed tomography (SPECT) projections were simulated by Monte Carlo method with isotope Technetium-99 m ([Formula: see text]Tc). Linear combinations of SPECT images were made, generating 12 different combinations of volume and background: each with both homogeneous thyroid activity concentration and three hotspots of different relative activity concentrations (48 SPECT images in total). The relative background levels chosen were 5 %, 10 %, 15 % and 20 % of the phantom activity concentration and the hotspot activities were 100 % (homogeneous case) 150 %, 200 % and 250 %. Poisson noise, (coefficient of variation of 0.8 at a 20 % background level, scattering excluded), was added before reconstruction was done with the Monte Carlo-based SPECT reconstruction algorithm Sahlgrenska Academy reconstruction code (SARec). Two different segmentation algorithms were applied: Otsu's threshold selection method and an adaptation of the Chan-Vese model for active contours without edges; the results were evaluated concerning relative volume, mean absolute error and standard deviation per thyroid volume, as well as dice similarity coefficient.</p><p><strong>Results: </strong>Both methods segment the images well and deviate similarly from the true volumes. They seem to slightly overestimate small volumes and underestimate large ones. Different background levels affect the two methods similarly as well. However, the Chan-Vese model deviates less and paired t-testing showed significant difference between distributions of dice similarity coefficients (p-value [Formula: see text]).</p><p><strong>Conclusions: </strong>The investigations indicate that the Chan-Vese model performs better and is slightly more robust, while being more challenging to implement and use clinically. There is a trade-off between performance and user-friendliness.</p>\",\"PeriodicalId\":11559,\"journal\":{\"name\":\"EJNMMI Physics\",\"volume\":\"11 1\",\"pages\":\"6\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10774246/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EJNMMI Physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40658-023-00609-9\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40658-023-00609-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Comparison of Otsu and an adapted Chan-Vese method to determine thyroid active volume using Monte Carlo generated SPECT images.
Background: The Otsu method and the Chan-Vese model are two methods proven to perform well in determining volumes of different organs and specific tissue fractions. This study aimed to compare the performance of the two methods regarding segmentation of active thyroid gland volumes, reflecting different clinical settings by varying the parameters: gland size, gland activity concentration, background activity concentration and gland activity concentration heterogeneity.
Methods: A computed tomography was performed on three playdough thyroid phantoms with volumes 20, 35 and 50 ml. The image data were separated into playdough and water based on Hounsfield values. Sixty single photon emission computed tomography (SPECT) projections were simulated by Monte Carlo method with isotope Technetium-99 m ([Formula: see text]Tc). Linear combinations of SPECT images were made, generating 12 different combinations of volume and background: each with both homogeneous thyroid activity concentration and three hotspots of different relative activity concentrations (48 SPECT images in total). The relative background levels chosen were 5 %, 10 %, 15 % and 20 % of the phantom activity concentration and the hotspot activities were 100 % (homogeneous case) 150 %, 200 % and 250 %. Poisson noise, (coefficient of variation of 0.8 at a 20 % background level, scattering excluded), was added before reconstruction was done with the Monte Carlo-based SPECT reconstruction algorithm Sahlgrenska Academy reconstruction code (SARec). Two different segmentation algorithms were applied: Otsu's threshold selection method and an adaptation of the Chan-Vese model for active contours without edges; the results were evaluated concerning relative volume, mean absolute error and standard deviation per thyroid volume, as well as dice similarity coefficient.
Results: Both methods segment the images well and deviate similarly from the true volumes. They seem to slightly overestimate small volumes and underestimate large ones. Different background levels affect the two methods similarly as well. However, the Chan-Vese model deviates less and paired t-testing showed significant difference between distributions of dice similarity coefficients (p-value [Formula: see text]).
Conclusions: The investigations indicate that the Chan-Vese model performs better and is slightly more robust, while being more challenging to implement and use clinically. There is a trade-off between performance and user-friendliness.
期刊介绍:
EJNMMI Physics is an international platform for scientists, users and adopters of nuclear medicine with a particular interest in physics matters. As a companion journal to the European Journal of Nuclear Medicine and Molecular Imaging, this journal has a multi-disciplinary approach and welcomes original materials and studies with a focus on applied physics and mathematics as well as imaging systems engineering and prototyping in nuclear medicine. This includes physics-driven approaches or algorithms supported by physics that foster early clinical adoption of nuclear medicine imaging and therapy.