{"title":"IFN-γ修饰的脐带间充质干细胞对颞下颌关节骨关节炎的疗效","authors":"Hyunjeong Kim, Yerin Kim, So-Yeon Yun, Bu-Kyu Lee","doi":"10.1007/s13770-023-00620-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Temporomandibular joint osteoarthritis (TMJOA) is a degenerative disease affecting the cartilage and subchondral bone, leading to temporomandibular joint pain and dysfunction. The complex nature of TMJOA warrants effective alternative treatments, and mesenchymal stem cells (MSCs) have shown promise in regenerative therapies. The aim of this study is twofold: firstly, to ascertain the optimal interferon-gamma (IFN-γ)-primed MSC cell line for TMJOA treatment, and secondly, to comprehensively evaluate the therapeutic efficacy of IFN-γ-primed mesenchymal stem cells derived from the human umbilical cord matrix in a rat model of TMJOA.</p><p><strong>Methods: </strong>We analyzed changes in the expression of several key genes associated with OA protection in MSC-secreted compounds. Following this, we performed co-culture experiments using a transwell system to predict gene expression changes in primed MSCs in the TMJOA environment. Subsequently, we investigated the efficacy of the selected IFN-γ-primed human umbilical cord matrix-derived MSCs (hUCM-MSCs) for TMJOA treatment in a rat model.</p><p><strong>Results: </strong>IFN-γ-primed MSCs exhibited enhanced expression of IDO, TSG-6, and FGF-2. Moreover, co-culturing with rat OA chondrocytes induced a decrease in pro-inflammatory and extracellular matrix degradation factors. In the rat TMJOA model, IFN-γ-primed MSCs with elevated IDO1, TSG-6, and FGF2 expression exhibited robust anti-inflammatory and therapeutic capacities, promoting the improvement of the inflammatory environment and cartilage regeneration.</p><p><strong>Conclusion: </strong>These findings underscore the importance of prioritizing the mitigation of the inflammatory milieu in TMJOA treatment and highlight IFN-γ-primed MSCs secreting these three factors as a promising, comprehensive therapeutic strategy.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"473-486"},"PeriodicalIF":4.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10987468/pdf/","citationCount":"0","resultStr":"{\"title\":\"Efficacy of IFN-γ-Primed Umbilical Cord-Derived Mesenchymal Stem Cells on Temporomandibular Joint Osteoarthritis.\",\"authors\":\"Hyunjeong Kim, Yerin Kim, So-Yeon Yun, Bu-Kyu Lee\",\"doi\":\"10.1007/s13770-023-00620-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Temporomandibular joint osteoarthritis (TMJOA) is a degenerative disease affecting the cartilage and subchondral bone, leading to temporomandibular joint pain and dysfunction. The complex nature of TMJOA warrants effective alternative treatments, and mesenchymal stem cells (MSCs) have shown promise in regenerative therapies. The aim of this study is twofold: firstly, to ascertain the optimal interferon-gamma (IFN-γ)-primed MSC cell line for TMJOA treatment, and secondly, to comprehensively evaluate the therapeutic efficacy of IFN-γ-primed mesenchymal stem cells derived from the human umbilical cord matrix in a rat model of TMJOA.</p><p><strong>Methods: </strong>We analyzed changes in the expression of several key genes associated with OA protection in MSC-secreted compounds. Following this, we performed co-culture experiments using a transwell system to predict gene expression changes in primed MSCs in the TMJOA environment. Subsequently, we investigated the efficacy of the selected IFN-γ-primed human umbilical cord matrix-derived MSCs (hUCM-MSCs) for TMJOA treatment in a rat model.</p><p><strong>Results: </strong>IFN-γ-primed MSCs exhibited enhanced expression of IDO, TSG-6, and FGF-2. Moreover, co-culturing with rat OA chondrocytes induced a decrease in pro-inflammatory and extracellular matrix degradation factors. In the rat TMJOA model, IFN-γ-primed MSCs with elevated IDO1, TSG-6, and FGF2 expression exhibited robust anti-inflammatory and therapeutic capacities, promoting the improvement of the inflammatory environment and cartilage regeneration.</p><p><strong>Conclusion: </strong>These findings underscore the importance of prioritizing the mitigation of the inflammatory milieu in TMJOA treatment and highlight IFN-γ-primed MSCs secreting these three factors as a promising, comprehensive therapeutic strategy.</p>\",\"PeriodicalId\":23126,\"journal\":{\"name\":\"Tissue engineering and regenerative medicine\",\"volume\":\" \",\"pages\":\"473-486\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10987468/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue engineering and regenerative medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13770-023-00620-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering and regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13770-023-00620-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Efficacy of IFN-γ-Primed Umbilical Cord-Derived Mesenchymal Stem Cells on Temporomandibular Joint Osteoarthritis.
Background: Temporomandibular joint osteoarthritis (TMJOA) is a degenerative disease affecting the cartilage and subchondral bone, leading to temporomandibular joint pain and dysfunction. The complex nature of TMJOA warrants effective alternative treatments, and mesenchymal stem cells (MSCs) have shown promise in regenerative therapies. The aim of this study is twofold: firstly, to ascertain the optimal interferon-gamma (IFN-γ)-primed MSC cell line for TMJOA treatment, and secondly, to comprehensively evaluate the therapeutic efficacy of IFN-γ-primed mesenchymal stem cells derived from the human umbilical cord matrix in a rat model of TMJOA.
Methods: We analyzed changes in the expression of several key genes associated with OA protection in MSC-secreted compounds. Following this, we performed co-culture experiments using a transwell system to predict gene expression changes in primed MSCs in the TMJOA environment. Subsequently, we investigated the efficacy of the selected IFN-γ-primed human umbilical cord matrix-derived MSCs (hUCM-MSCs) for TMJOA treatment in a rat model.
Results: IFN-γ-primed MSCs exhibited enhanced expression of IDO, TSG-6, and FGF-2. Moreover, co-culturing with rat OA chondrocytes induced a decrease in pro-inflammatory and extracellular matrix degradation factors. In the rat TMJOA model, IFN-γ-primed MSCs with elevated IDO1, TSG-6, and FGF2 expression exhibited robust anti-inflammatory and therapeutic capacities, promoting the improvement of the inflammatory environment and cartilage regeneration.
Conclusion: These findings underscore the importance of prioritizing the mitigation of the inflammatory milieu in TMJOA treatment and highlight IFN-γ-primed MSCs secreting these three factors as a promising, comprehensive therapeutic strategy.
期刊介绍:
Tissue Engineering and Regenerative Medicine (Tissue Eng Regen Med, TERM), the official journal of the Korean Tissue Engineering and Regenerative Medicine Society, is a publication dedicated to providing research- based solutions to issues related to human diseases. This journal publishes articles that report substantial information and original findings on tissue engineering, medical biomaterials, cells therapy, stem cell biology and regenerative medicine.