{"title":"利用压缩和削波滤波算法降低 256-QAM 光外径调制解调器 PAPR 的分析","authors":"Arun Kumar, S. Chakravarty, Aziz Nanthaamornphong","doi":"10.1515/joc-2023-0369","DOIUrl":null,"url":null,"abstract":"Abstract The article presents an investigation into Peak-to-Average Power Ratio (PAPR) reduction techniques in Optical Orthogonal Time Frequency Space (O-OTFS) modulation. Focusing on clipping and filtering as well as companding methods, the study explores their efficacy in mitigating PAPR challenges inherent in O-OTFS waveforms. The research evaluates the impact of these techniques on signal quality, particularly in the context of a Rician channel. Clipping and filtering (C&F) are examined for their ability to control amplitude peaks, while companding is analyzed for its role in optimizing dynamic range. The study conducts a comprehensive analysis of Bit Error Rate (BER) and power spectrum density (PSD) under varying conditions, shedding light on how these methods influence the reliability and robustness of OTFS communication. The investigation considers the interplay of these PAPR reduction methods with the unique characteristics of the Rician and Rayleigh channel, which includes a dominant line-of-sight component. The findings contribute valuable insights into designing efficient OTFS modulation systems for real-world scenarios. Ultimately, this research aims to provide a deeper understanding of PAPR reduction strategies in OTFS, offering guidance for optimizing signal processing techniques in communication systems where mitigating PAPR is crucial for achieving high performance and reliable data transmission. It is noted that the proposed C&F and companding algorithms outperform the conventional methods and achieved a PAPR gain of 1–3 dB and BER gain of 10.6–2 dB.","PeriodicalId":509395,"journal":{"name":"Journal of Optical Communications","volume":"39 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of PAPR reduction of optical-OTFS for 256-QAM using companding and clipping–filtering algorithms\",\"authors\":\"Arun Kumar, S. Chakravarty, Aziz Nanthaamornphong\",\"doi\":\"10.1515/joc-2023-0369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The article presents an investigation into Peak-to-Average Power Ratio (PAPR) reduction techniques in Optical Orthogonal Time Frequency Space (O-OTFS) modulation. Focusing on clipping and filtering as well as companding methods, the study explores their efficacy in mitigating PAPR challenges inherent in O-OTFS waveforms. The research evaluates the impact of these techniques on signal quality, particularly in the context of a Rician channel. Clipping and filtering (C&F) are examined for their ability to control amplitude peaks, while companding is analyzed for its role in optimizing dynamic range. The study conducts a comprehensive analysis of Bit Error Rate (BER) and power spectrum density (PSD) under varying conditions, shedding light on how these methods influence the reliability and robustness of OTFS communication. The investigation considers the interplay of these PAPR reduction methods with the unique characteristics of the Rician and Rayleigh channel, which includes a dominant line-of-sight component. The findings contribute valuable insights into designing efficient OTFS modulation systems for real-world scenarios. Ultimately, this research aims to provide a deeper understanding of PAPR reduction strategies in OTFS, offering guidance for optimizing signal processing techniques in communication systems where mitigating PAPR is crucial for achieving high performance and reliable data transmission. It is noted that the proposed C&F and companding algorithms outperform the conventional methods and achieved a PAPR gain of 1–3 dB and BER gain of 10.6–2 dB.\",\"PeriodicalId\":509395,\"journal\":{\"name\":\"Journal of Optical Communications\",\"volume\":\"39 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optical Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/joc-2023-0369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/joc-2023-0369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of PAPR reduction of optical-OTFS for 256-QAM using companding and clipping–filtering algorithms
Abstract The article presents an investigation into Peak-to-Average Power Ratio (PAPR) reduction techniques in Optical Orthogonal Time Frequency Space (O-OTFS) modulation. Focusing on clipping and filtering as well as companding methods, the study explores their efficacy in mitigating PAPR challenges inherent in O-OTFS waveforms. The research evaluates the impact of these techniques on signal quality, particularly in the context of a Rician channel. Clipping and filtering (C&F) are examined for their ability to control amplitude peaks, while companding is analyzed for its role in optimizing dynamic range. The study conducts a comprehensive analysis of Bit Error Rate (BER) and power spectrum density (PSD) under varying conditions, shedding light on how these methods influence the reliability and robustness of OTFS communication. The investigation considers the interplay of these PAPR reduction methods with the unique characteristics of the Rician and Rayleigh channel, which includes a dominant line-of-sight component. The findings contribute valuable insights into designing efficient OTFS modulation systems for real-world scenarios. Ultimately, this research aims to provide a deeper understanding of PAPR reduction strategies in OTFS, offering guidance for optimizing signal processing techniques in communication systems where mitigating PAPR is crucial for achieving high performance and reliable data transmission. It is noted that the proposed C&F and companding algorithms outperform the conventional methods and achieved a PAPR gain of 1–3 dB and BER gain of 10.6–2 dB.