研究消费分布对 CRRA 估算的影响:基于定量-CCAPM 的方法

Sofia B. Ramos, A. Taamouti, Helena Veiga
{"title":"研究消费分布对 CRRA 估算的影响:基于定量-CCAPM 的方法","authors":"Sofia B. Ramos, A. Taamouti, Helena Veiga","doi":"10.1515/snde-2023-0005","DOIUrl":null,"url":null,"abstract":"Abstract Using quantile maximization decision theory, this paper considers a quantile-based Euler equation that states that the asset price is a function of the quantiles of the payoff, consumption growth, the stochastic discount factor, risk aversion, and the distribution of the consumption growth rate. We use a more general distribution assumption (log-elliptical distributions) than the log-normality of the consumption growth rate assumed in the literature. The simulation results show that: (1) the higher the downside risk aversion, the lower the constant relative risk aversion; (2) the heavier the tails of the Student-t distribution, the higher the risk aversion for each level of downside risk aversion; and (3) the curve of the relationship between risk aversion and downside risk aversion shifts upward when the normality assumption is dropped, and the magnitude of this shift is high even for high degrees of freedom of the Student-t distribution. Our results suggest that using normally distributed errors to model stock returns and consumption growth rates could lead to an underestimation of the risk aversion coefficient.","PeriodicalId":501448,"journal":{"name":"Studies in Nonlinear Dynamics & Econometrics","volume":"13 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the Impact of Consumption Distribution on CRRA Estimation: Quantile-CCAPM-Based Approach\",\"authors\":\"Sofia B. Ramos, A. Taamouti, Helena Veiga\",\"doi\":\"10.1515/snde-2023-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Using quantile maximization decision theory, this paper considers a quantile-based Euler equation that states that the asset price is a function of the quantiles of the payoff, consumption growth, the stochastic discount factor, risk aversion, and the distribution of the consumption growth rate. We use a more general distribution assumption (log-elliptical distributions) than the log-normality of the consumption growth rate assumed in the literature. The simulation results show that: (1) the higher the downside risk aversion, the lower the constant relative risk aversion; (2) the heavier the tails of the Student-t distribution, the higher the risk aversion for each level of downside risk aversion; and (3) the curve of the relationship between risk aversion and downside risk aversion shifts upward when the normality assumption is dropped, and the magnitude of this shift is high even for high degrees of freedom of the Student-t distribution. Our results suggest that using normally distributed errors to model stock returns and consumption growth rates could lead to an underestimation of the risk aversion coefficient.\",\"PeriodicalId\":501448,\"journal\":{\"name\":\"Studies in Nonlinear Dynamics & Econometrics\",\"volume\":\"13 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Nonlinear Dynamics & Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/snde-2023-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics & Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/snde-2023-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文利用量子最大化决策理论,考虑了基于量子的欧拉方程,即资产价格是报酬、消费增长、随机贴现因子、风险规避和消费增长率分布的量子函数。与文献中假设的消费增长率的对数正态性相比,我们采用了更一般的分布假设(对数椭圆分布)。模拟结果表明(1) 下行风险规避程度越高,恒定相对风险规避程度越低;(2) Student-t 分布的尾部越重,每个下行风险规避程度的风险规避程度越高;(3) 当放弃正态性假设时,风险规避与下行风险规避之间的关系曲线向上移动,即使 Student-t 分布的自由度很高,这种移动的幅度也很大。我们的研究结果表明,使用正态分布误差来模拟股票收益率和消费增长率可能会导致低估风险规避系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigating the Impact of Consumption Distribution on CRRA Estimation: Quantile-CCAPM-Based Approach
Abstract Using quantile maximization decision theory, this paper considers a quantile-based Euler equation that states that the asset price is a function of the quantiles of the payoff, consumption growth, the stochastic discount factor, risk aversion, and the distribution of the consumption growth rate. We use a more general distribution assumption (log-elliptical distributions) than the log-normality of the consumption growth rate assumed in the literature. The simulation results show that: (1) the higher the downside risk aversion, the lower the constant relative risk aversion; (2) the heavier the tails of the Student-t distribution, the higher the risk aversion for each level of downside risk aversion; and (3) the curve of the relationship between risk aversion and downside risk aversion shifts upward when the normality assumption is dropped, and the magnitude of this shift is high even for high degrees of freedom of the Student-t distribution. Our results suggest that using normally distributed errors to model stock returns and consumption growth rates could lead to an underestimation of the risk aversion coefficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Asymptotic Properties of ReLU FFN Sieve Estimators Multivariate Stochastic Volatility with Co-Heteroscedasticity Heterogeneity, Jumps and Co-Movements in Transmission of Volatility Spillovers Among Cryptocurrencies Heterogeneous Volatility Information Content for the Realized GARCH Modeling and Forecasting Volatility Determination of the Number of Breaks in Heterogeneous Panel Data Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1