{"title":"加湿器使用过程中排放的溶液和气溶胶中聚六亚甲基胍低聚物的特性分析","authors":"Sunju Kim, Chungsik Yoon","doi":"10.1155/2024/7477565","DOIUrl":null,"url":null,"abstract":"<p>The behavior of polyhexamethylene guanidine (PHMG), the causative agent of many humidifier-induced lung diseases, is not well known because of its various oligomer structures and analytical difficulties. The aim of this study was to identify different PHMG oligomer types both in solution and aerosols and to estimate the airborne concentration of oligomers during humidifier use. Three products containing PHMG as the main component were diluted to the manufacturer’s recommended concentration (6.5 ppm) or the worst-case concentration (65 ppm or 125 ppm). Samples were qualitatively and quantitatively analyzed with liquid chromatography-quadrupole time-of-flight (LC-qToF) mass spectrometry in the diluted solution and in the air at 0.5 m and 1 m. The LC-qToF data were processed using UNIFI software to characterize the PHMG structure. For all products in both the humidifier solution and air, the linear type was predominant over the branched/cyclic structure, but each product had different characteristics. The linear structure in the Oxy product, the main product of lung diseases, accounted for 90.6%, while that of the Scunder and BOC Sciences’ products accounted for 78.6% and 75.8%, respectively. The concentration of the oligomer in air for the Oxy product was estimated to be 35.89 and 390.96 <i>μ</i>g/m<sup>3</sup> at 6.5 and 65 ppm, respectively. Most of the oligomers in the solution were found in air at a short distance (0.5 m), with a negligible concentration beyond 1 m. Oligomers with 1–7 monomer units were identified in the humidifier solution, whereas mainly monomers, dimers, and trimers were identified in the air. The results of this study will facilitate further investigations of the mechanisms of lung disease by identifying the behaviors and forms of PHMG in the air, along with previously revealed toxicity results.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Polyhexamethylene Guanidine Oligomers in Solutions and Aerosols Emitted during Humidifier Use\",\"authors\":\"Sunju Kim, Chungsik Yoon\",\"doi\":\"10.1155/2024/7477565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The behavior of polyhexamethylene guanidine (PHMG), the causative agent of many humidifier-induced lung diseases, is not well known because of its various oligomer structures and analytical difficulties. The aim of this study was to identify different PHMG oligomer types both in solution and aerosols and to estimate the airborne concentration of oligomers during humidifier use. Three products containing PHMG as the main component were diluted to the manufacturer’s recommended concentration (6.5 ppm) or the worst-case concentration (65 ppm or 125 ppm). Samples were qualitatively and quantitatively analyzed with liquid chromatography-quadrupole time-of-flight (LC-qToF) mass spectrometry in the diluted solution and in the air at 0.5 m and 1 m. The LC-qToF data were processed using UNIFI software to characterize the PHMG structure. For all products in both the humidifier solution and air, the linear type was predominant over the branched/cyclic structure, but each product had different characteristics. The linear structure in the Oxy product, the main product of lung diseases, accounted for 90.6%, while that of the Scunder and BOC Sciences’ products accounted for 78.6% and 75.8%, respectively. The concentration of the oligomer in air for the Oxy product was estimated to be 35.89 and 390.96 <i>μ</i>g/m<sup>3</sup> at 6.5 and 65 ppm, respectively. Most of the oligomers in the solution were found in air at a short distance (0.5 m), with a negligible concentration beyond 1 m. Oligomers with 1–7 monomer units were identified in the humidifier solution, whereas mainly monomers, dimers, and trimers were identified in the air. The results of this study will facilitate further investigations of the mechanisms of lung disease by identifying the behaviors and forms of PHMG in the air, along with previously revealed toxicity results.</p>\",\"PeriodicalId\":13529,\"journal\":{\"name\":\"Indoor air\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indoor air\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/7477565\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor air","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/7477565","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Characterization of Polyhexamethylene Guanidine Oligomers in Solutions and Aerosols Emitted during Humidifier Use
The behavior of polyhexamethylene guanidine (PHMG), the causative agent of many humidifier-induced lung diseases, is not well known because of its various oligomer structures and analytical difficulties. The aim of this study was to identify different PHMG oligomer types both in solution and aerosols and to estimate the airborne concentration of oligomers during humidifier use. Three products containing PHMG as the main component were diluted to the manufacturer’s recommended concentration (6.5 ppm) or the worst-case concentration (65 ppm or 125 ppm). Samples were qualitatively and quantitatively analyzed with liquid chromatography-quadrupole time-of-flight (LC-qToF) mass spectrometry in the diluted solution and in the air at 0.5 m and 1 m. The LC-qToF data were processed using UNIFI software to characterize the PHMG structure. For all products in both the humidifier solution and air, the linear type was predominant over the branched/cyclic structure, but each product had different characteristics. The linear structure in the Oxy product, the main product of lung diseases, accounted for 90.6%, while that of the Scunder and BOC Sciences’ products accounted for 78.6% and 75.8%, respectively. The concentration of the oligomer in air for the Oxy product was estimated to be 35.89 and 390.96 μg/m3 at 6.5 and 65 ppm, respectively. Most of the oligomers in the solution were found in air at a short distance (0.5 m), with a negligible concentration beyond 1 m. Oligomers with 1–7 monomer units were identified in the humidifier solution, whereas mainly monomers, dimers, and trimers were identified in the air. The results of this study will facilitate further investigations of the mechanisms of lung disease by identifying the behaviors and forms of PHMG in the air, along with previously revealed toxicity results.
期刊介绍:
The quality of the environment within buildings is a topic of major importance for public health.
Indoor Air provides a location for reporting original research results in the broad area defined by the indoor environment of non-industrial buildings. An international journal with multidisciplinary content, Indoor Air publishes papers reflecting the broad categories of interest in this field: health effects; thermal comfort; monitoring and modelling; source characterization; ventilation and other environmental control techniques.
The research results present the basic information to allow designers, building owners, and operators to provide a healthy and comfortable environment for building occupants, as well as giving medical practitioners information on how to deal with illnesses related to the indoor environment.