Ok Kyu Park, Seulgi Han, S. Park, Jamil Ur Rahman, Sang-il Kim, Sungmo Choi
{"title":"碳纤维增强聚合物在高温下的热力学行为和微观结构特性","authors":"Ok Kyu Park, Seulgi Han, S. Park, Jamil Ur Rahman, Sang-il Kim, Sungmo Choi","doi":"10.3365/kjmm.2024.62.1.57","DOIUrl":null,"url":null,"abstract":"Carbon fiber reinforced polymer (CFRP) has been extensively used in civil engineering for applications such as reinforcing and retrofitting various architectural materials. Therefore, understanding the degradation of CFRP under high temperatures is important. This study aims to investigate the thermomechanical and microstructural properties of CFRP plates at elevated temperatures up to 350 oC. The platetype CFRP composites were subjected to temperatures of 50, 100, 150, 200, 250, 300, and 350 oC, and then compared with pristine CFRP samples. X-ray diffraction analysis was conducted to examine the crystal structures of the carbon fibers and epoxy resin matrices in the CFRP. At temperatures higher than 150 oC, the FWHM increased due to the degradation and softening of the resin matrix. Delamination and debonding between the matrix and fibers were observed in samples exposed to temperatures above 200 oC. The maximum tensile strength of the CFRP plates exposed at 350 oC significantly decreased to 0.605 GPa, a reduction of approximately 40% compared to the pristine sample. On the other hand, Young's modulus remained relatively unchanged across the different temperatures. This suggests that the polymer matrix degradation plays a crucial role in the mechanical properties of CFRP, as the matrix layers contribute significantly to the distribution of forces.","PeriodicalId":17894,"journal":{"name":"Korean Journal of Metals and Materials","volume":"43 16","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermomechanical Behavior and Microstructure Properties of Carbon Fiber Reinforced Polymer at Elevated Temperatures\",\"authors\":\"Ok Kyu Park, Seulgi Han, S. Park, Jamil Ur Rahman, Sang-il Kim, Sungmo Choi\",\"doi\":\"10.3365/kjmm.2024.62.1.57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon fiber reinforced polymer (CFRP) has been extensively used in civil engineering for applications such as reinforcing and retrofitting various architectural materials. Therefore, understanding the degradation of CFRP under high temperatures is important. This study aims to investigate the thermomechanical and microstructural properties of CFRP plates at elevated temperatures up to 350 oC. The platetype CFRP composites were subjected to temperatures of 50, 100, 150, 200, 250, 300, and 350 oC, and then compared with pristine CFRP samples. X-ray diffraction analysis was conducted to examine the crystal structures of the carbon fibers and epoxy resin matrices in the CFRP. At temperatures higher than 150 oC, the FWHM increased due to the degradation and softening of the resin matrix. Delamination and debonding between the matrix and fibers were observed in samples exposed to temperatures above 200 oC. The maximum tensile strength of the CFRP plates exposed at 350 oC significantly decreased to 0.605 GPa, a reduction of approximately 40% compared to the pristine sample. On the other hand, Young's modulus remained relatively unchanged across the different temperatures. This suggests that the polymer matrix degradation plays a crucial role in the mechanical properties of CFRP, as the matrix layers contribute significantly to the distribution of forces.\",\"PeriodicalId\":17894,\"journal\":{\"name\":\"Korean Journal of Metals and Materials\",\"volume\":\"43 16\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Metals and Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3365/kjmm.2024.62.1.57\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Metals and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3365/kjmm.2024.62.1.57","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Thermomechanical Behavior and Microstructure Properties of Carbon Fiber Reinforced Polymer at Elevated Temperatures
Carbon fiber reinforced polymer (CFRP) has been extensively used in civil engineering for applications such as reinforcing and retrofitting various architectural materials. Therefore, understanding the degradation of CFRP under high temperatures is important. This study aims to investigate the thermomechanical and microstructural properties of CFRP plates at elevated temperatures up to 350 oC. The platetype CFRP composites were subjected to temperatures of 50, 100, 150, 200, 250, 300, and 350 oC, and then compared with pristine CFRP samples. X-ray diffraction analysis was conducted to examine the crystal structures of the carbon fibers and epoxy resin matrices in the CFRP. At temperatures higher than 150 oC, the FWHM increased due to the degradation and softening of the resin matrix. Delamination and debonding between the matrix and fibers were observed in samples exposed to temperatures above 200 oC. The maximum tensile strength of the CFRP plates exposed at 350 oC significantly decreased to 0.605 GPa, a reduction of approximately 40% compared to the pristine sample. On the other hand, Young's modulus remained relatively unchanged across the different temperatures. This suggests that the polymer matrix degradation plays a crucial role in the mechanical properties of CFRP, as the matrix layers contribute significantly to the distribution of forces.
期刊介绍:
The Korean Journal of Metals and Materials is a representative Korean-language journal of the Korean Institute of Metals and Materials (KIM); it publishes domestic and foreign academic papers related to metals and materials, in abroad range of fields from metals and materials to nano-materials, biomaterials, functional materials, energy materials, and new materials, and its official ISO designation is Korean J. Met. Mater.