基于螺钉理论的多移动机器人运动控制,用于飞机面板组装

Rupeng Li, Lei Xue, Xingwei Zhao, En-de Ge, Bo Tao
{"title":"基于螺钉理论的多移动机器人运动控制,用于飞机面板组装","authors":"Rupeng Li, Lei Xue, Xingwei Zhao, En-de Ge, Bo Tao","doi":"10.1177/00202940231218531","DOIUrl":null,"url":null,"abstract":"As a crucial component of large aircraft, the assembly efficiency of aircraft skins directly impacts production efficiency. To achieve efficient manufacturing of aircraft skins, this paper proposes a multiple mobile robot control algorithm based on screw theory. The robot arm is integrated into a rail or AGV to increase its motion space, creating a mobile robot assembly system. To address the redundant degrees of freedom problem caused by the mobile manipulator, this paper adopts the screw theory to describe the motion of multiple robots. Furthermore, to ensure the constraint of the motion between multiple robots, this paper proposes a multi-robot control method based on screw constraint. Rigid body constraints are assigned to the end of each mobile manipulator, and the motion is decomposed to the mobile platform and the robot arm. Finally, the cooperative motion control of multiple mobile manipulators is realized. The proposed algorithm is applied in the multi-mobile manipulator cooperative aircraft panel assembly task, achieving efficient assembly of aircraft panel and long truss.","PeriodicalId":18375,"journal":{"name":"Measurement and Control","volume":"20 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple mobile robots motion control based on screw theory for aircraft panel assembly\",\"authors\":\"Rupeng Li, Lei Xue, Xingwei Zhao, En-de Ge, Bo Tao\",\"doi\":\"10.1177/00202940231218531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a crucial component of large aircraft, the assembly efficiency of aircraft skins directly impacts production efficiency. To achieve efficient manufacturing of aircraft skins, this paper proposes a multiple mobile robot control algorithm based on screw theory. The robot arm is integrated into a rail or AGV to increase its motion space, creating a mobile robot assembly system. To address the redundant degrees of freedom problem caused by the mobile manipulator, this paper adopts the screw theory to describe the motion of multiple robots. Furthermore, to ensure the constraint of the motion between multiple robots, this paper proposes a multi-robot control method based on screw constraint. Rigid body constraints are assigned to the end of each mobile manipulator, and the motion is decomposed to the mobile platform and the robot arm. Finally, the cooperative motion control of multiple mobile manipulators is realized. The proposed algorithm is applied in the multi-mobile manipulator cooperative aircraft panel assembly task, achieving efficient assembly of aircraft panel and long truss.\",\"PeriodicalId\":18375,\"journal\":{\"name\":\"Measurement and Control\",\"volume\":\"20 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00202940231218531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940231218531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为大型飞机的关键部件,飞机蒙皮的装配效率直接影响生产效率。为实现飞机蒙皮的高效制造,本文提出了一种基于螺杆理论的多移动机器人控制算法。将机器人手臂集成到轨道或 AGV 中,增加其运动空间,形成移动机器人装配系统。针对移动机械手带来的自由度冗余问题,本文采用螺杆理论来描述多个机械手的运动。此外,为了确保多个机器人之间的运动约束,本文提出了一种基于螺杆约束的多机器人控制方法。为每个移动机械手的末端分配刚体约束,并将运动分解为移动平台和机械臂。最后,实现多个移动机械手的协同运动控制。所提出的算法被应用于多移动机械手协同装配飞机面板的任务中,实现了飞机面板和长桁架的高效装配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiple mobile robots motion control based on screw theory for aircraft panel assembly
As a crucial component of large aircraft, the assembly efficiency of aircraft skins directly impacts production efficiency. To achieve efficient manufacturing of aircraft skins, this paper proposes a multiple mobile robot control algorithm based on screw theory. The robot arm is integrated into a rail or AGV to increase its motion space, creating a mobile robot assembly system. To address the redundant degrees of freedom problem caused by the mobile manipulator, this paper adopts the screw theory to describe the motion of multiple robots. Furthermore, to ensure the constraint of the motion between multiple robots, this paper proposes a multi-robot control method based on screw constraint. Rigid body constraints are assigned to the end of each mobile manipulator, and the motion is decomposed to the mobile platform and the robot arm. Finally, the cooperative motion control of multiple mobile manipulators is realized. The proposed algorithm is applied in the multi-mobile manipulator cooperative aircraft panel assembly task, achieving efficient assembly of aircraft panel and long truss.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Train timetable and stopping plan generation based on cross-line passenger flow in high-speed railway network Enhancing water pressure sensing in challenging environments: A strain gage technology integrated with deep learning approach Photovoltaic MPPT control and improvement strategies considering environmental factors: based on PID-type sliding mode control and improved grey wolf optimization Tracking controller design for quadrotor UAVs under external disturbances using a high-order sliding mode-assisted disturbance observer Evaluating vehicle trafficability on soft ground using wheel force information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1