通过电镀实现射频 GaN-HFET 的低电阻栅极模块

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Semiconductor Science and Technology Pub Date : 2024-01-04 DOI:10.1088/1361-6641/ad1b16
Hossein Yazdani, Andreas Thies, Paul Stützle, O. Bengtsson, Oliver Hilt, Wolfgang Heinrich, Joachim Wuerfl
{"title":"通过电镀实现射频 GaN-HFET 的低电阻栅极模块","authors":"Hossein Yazdani, Andreas Thies, Paul Stützle, O. Bengtsson, Oliver Hilt, Wolfgang Heinrich, Joachim Wuerfl","doi":"10.1088/1361-6641/ad1b16","DOIUrl":null,"url":null,"abstract":"\n This paper presents a novel approach for reducing the gate resistance (Rg) of K and Ka-band GaN HFETs with 150 nm gate length through a new gate metallization technique. The method involves increasing the gate cross-section via galvanic metallization using FBH's Ir-sputter gate technology, which allows an increase in gate metal thickness from the current 0.4 μm to approximately 1.0 μm for the transistors under investigation. This optimization leads to a substantial 50% reduction in gate series resistance, resulting in significant improvements in the RF performance. Specifically, the devices achieve 20% higher output power density and 10% better power-added efficiency (PAE) at 20 GHz and Vds = 20 V. The decreased gate resistance enables new degrees of freedom in design, such as longer gate fingers and/or shorter gate lengths, for more efficient power cells operating in this frequency range.","PeriodicalId":21585,"journal":{"name":"Semiconductor Science and Technology","volume":"28 5","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-resistive gate module for RF GaN-HFETs by electroplating\",\"authors\":\"Hossein Yazdani, Andreas Thies, Paul Stützle, O. Bengtsson, Oliver Hilt, Wolfgang Heinrich, Joachim Wuerfl\",\"doi\":\"10.1088/1361-6641/ad1b16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper presents a novel approach for reducing the gate resistance (Rg) of K and Ka-band GaN HFETs with 150 nm gate length through a new gate metallization technique. The method involves increasing the gate cross-section via galvanic metallization using FBH's Ir-sputter gate technology, which allows an increase in gate metal thickness from the current 0.4 μm to approximately 1.0 μm for the transistors under investigation. This optimization leads to a substantial 50% reduction in gate series resistance, resulting in significant improvements in the RF performance. Specifically, the devices achieve 20% higher output power density and 10% better power-added efficiency (PAE) at 20 GHz and Vds = 20 V. The decreased gate resistance enables new degrees of freedom in design, such as longer gate fingers and/or shorter gate lengths, for more efficient power cells operating in this frequency range.\",\"PeriodicalId\":21585,\"journal\":{\"name\":\"Semiconductor Science and Technology\",\"volume\":\"28 5\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semiconductor Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6641/ad1b16\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad1b16","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种通过新型栅极金属化技术降低栅极长度为 150 nm 的 K 和 Ka 波段氮化镓高频晶体管栅极电阻 (Rg) 的新方法。该方法采用 FBH 的 Ir-sputter 栅极技术,通过电镀金属化增加栅极横截面,从而将所研究晶体管的栅极金属厚度从目前的 0.4 μm 增加到约 1.0 μm。这一优化使栅极串联电阻大幅降低了 50%,从而显著提高了射频性能。栅极电阻的减小为设计提供了新的自由度,如更长的栅极指和/或更短的栅极长度,从而实现在此频率范围内更高效的功率电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-resistive gate module for RF GaN-HFETs by electroplating
This paper presents a novel approach for reducing the gate resistance (Rg) of K and Ka-band GaN HFETs with 150 nm gate length through a new gate metallization technique. The method involves increasing the gate cross-section via galvanic metallization using FBH's Ir-sputter gate technology, which allows an increase in gate metal thickness from the current 0.4 μm to approximately 1.0 μm for the transistors under investigation. This optimization leads to a substantial 50% reduction in gate series resistance, resulting in significant improvements in the RF performance. Specifically, the devices achieve 20% higher output power density and 10% better power-added efficiency (PAE) at 20 GHz and Vds = 20 V. The decreased gate resistance enables new degrees of freedom in design, such as longer gate fingers and/or shorter gate lengths, for more efficient power cells operating in this frequency range.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Semiconductor Science and Technology
Semiconductor Science and Technology 工程技术-材料科学:综合
CiteScore
4.30
自引率
5.30%
发文量
216
审稿时长
2.4 months
期刊介绍: Devoted to semiconductor research, Semiconductor Science and Technology''s multidisciplinary approach reflects the far-reaching nature of this topic. The scope of the journal covers fundamental and applied experimental and theoretical studies of the properties of non-organic, organic and oxide semiconductors, their interfaces and devices, including: fundamental properties materials and nanostructures devices and applications fabrication and processing new analytical techniques simulation emerging fields: materials and devices for quantum technologies hybrid structures and devices 2D and topological materials metamaterials semiconductors for energy flexible electronics.
期刊最新文献
Effect of atomic layer deposition process parameters on TiN electrode for Hf0.5Zr0.5O2 ferroelectric capacitor The ab initio study of n-type nitrogen and gallium co-doped diamond Self-powered Schottky barrier photodetector with high responsivity based on homoepitaxial Ga2O3 films by MOCVD Sub-bandgap excited photoluminescence probing of deep defect complexes in GaN doped by Si, Ge and C impurities The effect of temperature on the electrical characteristics of zigzag and armchair black phosphorus based 2D MOSFET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1