{"title":"受双轴载荷作用的超弹性镍钛管的应力应变响应和变形模式建模","authors":"Mingxun Wu, Dongjie Jiang","doi":"10.1007/s42401-023-00266-x","DOIUrl":null,"url":null,"abstract":"<div><p>Nearly equiatomic NiTi shape memory alloy exhibits superelasticity, i.e., it can be strained up to ~ 7% and recover completely upon unloading, and consequently, the stress–strain response forms a closed hysteresis. The mechanical behavior of superelastic NiTi is characterized by significant tension–compression asymmetry, which leads to complexity in the stress–strain responses and deformation patterns of thin-walled superelastic NiTi tubes loaded by axial force and internal pressure simultaneously. In the reported biaxial experiments, the NiTi tube exhibits hardening responses and essentially homogeneous deformation in a neighborhood of equibiaxiality. In other cases, its stress–strain responses trace stress plateaus associated with localized deformation patterns, and the level of plateaus, magnitude of transformation strains, and orientation of the localization bands are strongly dependent on the axial-to-hoop stress ratio. In this paper, finite element modeling is performed to analyze numerically the mechanical response of biaxially loaded superelastic NiTi tube. A numerical feedback control scheme is developed to maintain the stress ratio to follow the target value. The simulations reproduce successfully the observed phenomena in the experiments, such as the localization of helical bands, the variation of band angles with stress ratio, as well as the hardening and uniform deformation near the state of equibiaxial stress. In addition, the variation of axial and hoop stress–strain responses with different stress ratios are also studied, which are reasonably close to the experimental ones. The presented work demonstrates the validity of the developed finite element analysis framework and paves the way for analysis of superelastic shape memory alloy structures under multiaxial loading.</p></div>","PeriodicalId":36309,"journal":{"name":"Aerospace Systems","volume":"7 3","pages":"599 - 615"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling of the stress–strain responses and deformation patterns of superelastic NiTi tubes subjected to biaxial loadings\",\"authors\":\"Mingxun Wu, Dongjie Jiang\",\"doi\":\"10.1007/s42401-023-00266-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nearly equiatomic NiTi shape memory alloy exhibits superelasticity, i.e., it can be strained up to ~ 7% and recover completely upon unloading, and consequently, the stress–strain response forms a closed hysteresis. The mechanical behavior of superelastic NiTi is characterized by significant tension–compression asymmetry, which leads to complexity in the stress–strain responses and deformation patterns of thin-walled superelastic NiTi tubes loaded by axial force and internal pressure simultaneously. In the reported biaxial experiments, the NiTi tube exhibits hardening responses and essentially homogeneous deformation in a neighborhood of equibiaxiality. In other cases, its stress–strain responses trace stress plateaus associated with localized deformation patterns, and the level of plateaus, magnitude of transformation strains, and orientation of the localization bands are strongly dependent on the axial-to-hoop stress ratio. In this paper, finite element modeling is performed to analyze numerically the mechanical response of biaxially loaded superelastic NiTi tube. A numerical feedback control scheme is developed to maintain the stress ratio to follow the target value. The simulations reproduce successfully the observed phenomena in the experiments, such as the localization of helical bands, the variation of band angles with stress ratio, as well as the hardening and uniform deformation near the state of equibiaxial stress. In addition, the variation of axial and hoop stress–strain responses with different stress ratios are also studied, which are reasonably close to the experimental ones. The presented work demonstrates the validity of the developed finite element analysis framework and paves the way for analysis of superelastic shape memory alloy structures under multiaxial loading.</p></div>\",\"PeriodicalId\":36309,\"journal\":{\"name\":\"Aerospace Systems\",\"volume\":\"7 3\",\"pages\":\"599 - 615\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42401-023-00266-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Systems","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42401-023-00266-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Modeling of the stress–strain responses and deformation patterns of superelastic NiTi tubes subjected to biaxial loadings
Nearly equiatomic NiTi shape memory alloy exhibits superelasticity, i.e., it can be strained up to ~ 7% and recover completely upon unloading, and consequently, the stress–strain response forms a closed hysteresis. The mechanical behavior of superelastic NiTi is characterized by significant tension–compression asymmetry, which leads to complexity in the stress–strain responses and deformation patterns of thin-walled superelastic NiTi tubes loaded by axial force and internal pressure simultaneously. In the reported biaxial experiments, the NiTi tube exhibits hardening responses and essentially homogeneous deformation in a neighborhood of equibiaxiality. In other cases, its stress–strain responses trace stress plateaus associated with localized deformation patterns, and the level of plateaus, magnitude of transformation strains, and orientation of the localization bands are strongly dependent on the axial-to-hoop stress ratio. In this paper, finite element modeling is performed to analyze numerically the mechanical response of biaxially loaded superelastic NiTi tube. A numerical feedback control scheme is developed to maintain the stress ratio to follow the target value. The simulations reproduce successfully the observed phenomena in the experiments, such as the localization of helical bands, the variation of band angles with stress ratio, as well as the hardening and uniform deformation near the state of equibiaxial stress. In addition, the variation of axial and hoop stress–strain responses with different stress ratios are also studied, which are reasonably close to the experimental ones. The presented work demonstrates the validity of the developed finite element analysis framework and paves the way for analysis of superelastic shape memory alloy structures under multiaxial loading.
期刊介绍:
Aerospace Systems provides an international, peer-reviewed forum which focuses on system-level research and development regarding aeronautics and astronautics. The journal emphasizes the unique role and increasing importance of informatics on aerospace. It fills a gap in current publishing coverage from outer space vehicles to atmospheric vehicles by highlighting interdisciplinary science, technology and engineering.
Potential topics include, but are not limited to:
Trans-space vehicle systems design and integration
Air vehicle systems
Space vehicle systems
Near-space vehicle systems
Aerospace robotics and unmanned system
Communication, navigation and surveillance
Aerodynamics and aircraft design
Dynamics and control
Aerospace propulsion
Avionics system
Opto-electronic system
Air traffic management
Earth observation
Deep space exploration
Bionic micro-aircraft/spacecraft
Intelligent sensing and Information fusion