通过局部参数化提高张量积 B 样条曲面的逼近质量

IF 1.2 Q4 REMOTE SENSING Journal of Applied Geodesy Pub Date : 2024-01-04 DOI:10.1515/jag-2023-0071
C. Harmening, Ramon Butzer
{"title":"通过局部参数化提高张量积 B 样条曲面的逼近质量","authors":"C. Harmening, Ramon Butzer","doi":"10.1515/jag-2023-0071","DOIUrl":null,"url":null,"abstract":"Abstract Freeform surfaces like tensor product B-spline surfaces have been proven to be a suitable tool to model laser scanner point clouds, especially those representing artificial objects. However, when it comes to the modelling of point clouds representing natural surfaces with a lot of local structures, tensor product B-spline surfaces reach their limits. Refinement strategies are usually used as an alternative, but their functional description is no longer nearly as compact as that of classical tensor product B-spline surfaces, making subsequent analysis steps considerably more cumbersome. In this publication, the approximation quality of classical tensor product B-spline surfaces is improved by means of local parameterization. By using base surfaces with a local character, relevant information about local structures of the surface to be estimated are stored in the surface parameters during the parameterization step. As a consequence, the resulting tensor product B-spline surface is able to represent these structures even with only a small number of control points. The developed locally parameterized B-spline surfaces are used to model four data sets with different characteristics. The results reveal a clear improvement compared to the classical tensor product B-spline surfaces in terms of correctness, goodness-of-fit and stability.","PeriodicalId":45494,"journal":{"name":"Journal of Applied Geodesy","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the approximation quality of tensor product B-spline surfaces by local parameterization\",\"authors\":\"C. Harmening, Ramon Butzer\",\"doi\":\"10.1515/jag-2023-0071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Freeform surfaces like tensor product B-spline surfaces have been proven to be a suitable tool to model laser scanner point clouds, especially those representing artificial objects. However, when it comes to the modelling of point clouds representing natural surfaces with a lot of local structures, tensor product B-spline surfaces reach their limits. Refinement strategies are usually used as an alternative, but their functional description is no longer nearly as compact as that of classical tensor product B-spline surfaces, making subsequent analysis steps considerably more cumbersome. In this publication, the approximation quality of classical tensor product B-spline surfaces is improved by means of local parameterization. By using base surfaces with a local character, relevant information about local structures of the surface to be estimated are stored in the surface parameters during the parameterization step. As a consequence, the resulting tensor product B-spline surface is able to represent these structures even with only a small number of control points. The developed locally parameterized B-spline surfaces are used to model four data sets with different characteristics. The results reveal a clear improvement compared to the classical tensor product B-spline surfaces in terms of correctness, goodness-of-fit and stability.\",\"PeriodicalId\":45494,\"journal\":{\"name\":\"Journal of Applied Geodesy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Geodesy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jag-2023-0071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geodesy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jag-2023-0071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

摘要

摘要 自由曲面(如张量积 B 样条曲面)已被证明是激光扫描点云建模的合适工具,尤其是那些表示人造物体的点云。然而,当要对代表具有大量局部结构的自然表面的点云进行建模时,张量积 B 样条曲面就达到了极限。通常采用细化策略作为替代方案,但其功能描述不再像经典张量积 B 样条曲面那样紧凑,使得后续分析步骤更加繁琐。在本论文中,经典张量乘 B-样条曲面的近似质量通过局部参数化得到了改善。通过使用具有局部特征的基面,在参数化步骤中,待估算曲面局部结构的相关信息被存储在曲面参数中。因此,即使只有少量控制点,生成的张量乘积 B-样条曲面也能表示这些结构。所开发的局部参数化 B-样条曲面被用于对四个具有不同特征的数据集进行建模。结果表明,与传统的张量积 B-样条曲面相比,该方法在正确性、拟合度和稳定性方面都有明显改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving the approximation quality of tensor product B-spline surfaces by local parameterization
Abstract Freeform surfaces like tensor product B-spline surfaces have been proven to be a suitable tool to model laser scanner point clouds, especially those representing artificial objects. However, when it comes to the modelling of point clouds representing natural surfaces with a lot of local structures, tensor product B-spline surfaces reach their limits. Refinement strategies are usually used as an alternative, but their functional description is no longer nearly as compact as that of classical tensor product B-spline surfaces, making subsequent analysis steps considerably more cumbersome. In this publication, the approximation quality of classical tensor product B-spline surfaces is improved by means of local parameterization. By using base surfaces with a local character, relevant information about local structures of the surface to be estimated are stored in the surface parameters during the parameterization step. As a consequence, the resulting tensor product B-spline surface is able to represent these structures even with only a small number of control points. The developed locally parameterized B-spline surfaces are used to model four data sets with different characteristics. The results reveal a clear improvement compared to the classical tensor product B-spline surfaces in terms of correctness, goodness-of-fit and stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Geodesy
Journal of Applied Geodesy REMOTE SENSING-
CiteScore
2.30
自引率
7.10%
发文量
30
期刊最新文献
Occurrence characteristics of ionospheric scintillations in the civilian GPS signals (L1, L2, and L5) through a dedicated scintillation monitoring receiver at a low-latitude location in India during the 25th solar cycle A new challenge for cadastral surveying in Taiwan: feasibility analysis using combination on CORS data and online PPP service Monitoring of a rockfill embankment dam using TLS and sUAS point clouds Analyzing recent deformation in Wadi Hagul, Eastern Desert, Egypt, via advanced remote sensing and geodetic data processing Regional evaluation of global geopotential models and three types of digital elevation models with ground-based gravity and GNSS/levelling data using several techniques over Sudan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1