{"title":"基于分层特征和增强关联的中国市长热线事件分配","authors":"Gang Chen, Xiaomin Cheng, Jianpeng Chen, Xiangrong She, JiaQi Qin, Jian Chen","doi":"10.1111/coin.12626","DOIUrl":null,"url":null,"abstract":"<p>Nowadays, manual event assignment for Chinese mayor's hotline is still a problem of low efficiency. In this paper, we propose a computer-aided event assignment method based on hierarchical features and enhanced association. First, hierarchical features of hotline events are extracted to obtain event encoding vectors. Second, the fine-tuned RoBERTa2RoBERTa model is used to encode the “sanding” responsibility texts of Chinese local departments. Third, an association enhanced attention (AEA) mechanism is proposed to capture the correlation information of the “event-sanding” splicing vectors for the sake of obtaining matching results of “event-sanding,” and the matching results are input into the classifier. Finally, the assignment department for is obtained by a department selection module. Experimental results show that our method can achieve better performance compared with several baseline methods on HEAD (a dataset we construct independently). The ablation experiments also demonstrate the validity of each key module in our method.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"40 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Event assigning based on hierarchical features and enhanced association for Chinese mayor's hotline\",\"authors\":\"Gang Chen, Xiaomin Cheng, Jianpeng Chen, Xiangrong She, JiaQi Qin, Jian Chen\",\"doi\":\"10.1111/coin.12626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nowadays, manual event assignment for Chinese mayor's hotline is still a problem of low efficiency. In this paper, we propose a computer-aided event assignment method based on hierarchical features and enhanced association. First, hierarchical features of hotline events are extracted to obtain event encoding vectors. Second, the fine-tuned RoBERTa2RoBERTa model is used to encode the “sanding” responsibility texts of Chinese local departments. Third, an association enhanced attention (AEA) mechanism is proposed to capture the correlation information of the “event-sanding” splicing vectors for the sake of obtaining matching results of “event-sanding,” and the matching results are input into the classifier. Finally, the assignment department for is obtained by a department selection module. Experimental results show that our method can achieve better performance compared with several baseline methods on HEAD (a dataset we construct independently). The ablation experiments also demonstrate the validity of each key module in our method.</p>\",\"PeriodicalId\":55228,\"journal\":{\"name\":\"Computational Intelligence\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/coin.12626\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.12626","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Event assigning based on hierarchical features and enhanced association for Chinese mayor's hotline
Nowadays, manual event assignment for Chinese mayor's hotline is still a problem of low efficiency. In this paper, we propose a computer-aided event assignment method based on hierarchical features and enhanced association. First, hierarchical features of hotline events are extracted to obtain event encoding vectors. Second, the fine-tuned RoBERTa2RoBERTa model is used to encode the “sanding” responsibility texts of Chinese local departments. Third, an association enhanced attention (AEA) mechanism is proposed to capture the correlation information of the “event-sanding” splicing vectors for the sake of obtaining matching results of “event-sanding,” and the matching results are input into the classifier. Finally, the assignment department for is obtained by a department selection module. Experimental results show that our method can achieve better performance compared with several baseline methods on HEAD (a dataset we construct independently). The ablation experiments also demonstrate the validity of each key module in our method.
期刊介绍:
This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.