Elena Karpovich, Timur Kombaev, Djahid Gueraiche, Dmitriy Strelets
{"title":"火箭与太阳能翼尾火星无人飞行器:设计、分析和贸易研究","authors":"Elena Karpovich, Timur Kombaev, Djahid Gueraiche, Dmitriy Strelets","doi":"10.1007/s42401-023-00267-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a rocket-based UAV and a solar wing-tail Martian UAV were designed and assessed against a set of criteria established using a house of quality chart. For the design, analysis, trade studies, and optimization, MATLAB and XFLR5 were used. The optimized versions of the two configurations feature the same wing and tail airfoils, the same wing and tail planforms, different dimensions, weight, and performance. Therefore, distinct types of scientific missions are suitable for these aircraft. The results of the study extend our understanding of the capabilities of a Martian fixed-wing airplane in terms of payload mass, hence its scientific value, as well as in terms of its planform geometry and airfoil shapes.</p></div>","PeriodicalId":36309,"journal":{"name":"Aerospace Systems","volume":"7 4","pages":"693 - 707"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rocket-based versus solar wing-tail Martian UAVs: design, analysis, and trade studies\",\"authors\":\"Elena Karpovich, Timur Kombaev, Djahid Gueraiche, Dmitriy Strelets\",\"doi\":\"10.1007/s42401-023-00267-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, a rocket-based UAV and a solar wing-tail Martian UAV were designed and assessed against a set of criteria established using a house of quality chart. For the design, analysis, trade studies, and optimization, MATLAB and XFLR5 were used. The optimized versions of the two configurations feature the same wing and tail airfoils, the same wing and tail planforms, different dimensions, weight, and performance. Therefore, distinct types of scientific missions are suitable for these aircraft. The results of the study extend our understanding of the capabilities of a Martian fixed-wing airplane in terms of payload mass, hence its scientific value, as well as in terms of its planform geometry and airfoil shapes.</p></div>\",\"PeriodicalId\":36309,\"journal\":{\"name\":\"Aerospace Systems\",\"volume\":\"7 4\",\"pages\":\"693 - 707\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42401-023-00267-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Systems","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42401-023-00267-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Rocket-based versus solar wing-tail Martian UAVs: design, analysis, and trade studies
In this study, a rocket-based UAV and a solar wing-tail Martian UAV were designed and assessed against a set of criteria established using a house of quality chart. For the design, analysis, trade studies, and optimization, MATLAB and XFLR5 were used. The optimized versions of the two configurations feature the same wing and tail airfoils, the same wing and tail planforms, different dimensions, weight, and performance. Therefore, distinct types of scientific missions are suitable for these aircraft. The results of the study extend our understanding of the capabilities of a Martian fixed-wing airplane in terms of payload mass, hence its scientific value, as well as in terms of its planform geometry and airfoil shapes.
期刊介绍:
Aerospace Systems provides an international, peer-reviewed forum which focuses on system-level research and development regarding aeronautics and astronautics. The journal emphasizes the unique role and increasing importance of informatics on aerospace. It fills a gap in current publishing coverage from outer space vehicles to atmospheric vehicles by highlighting interdisciplinary science, technology and engineering.
Potential topics include, but are not limited to:
Trans-space vehicle systems design and integration
Air vehicle systems
Space vehicle systems
Near-space vehicle systems
Aerospace robotics and unmanned system
Communication, navigation and surveillance
Aerodynamics and aircraft design
Dynamics and control
Aerospace propulsion
Avionics system
Opto-electronic system
Air traffic management
Earth observation
Deep space exploration
Bionic micro-aircraft/spacecraft
Intelligent sensing and Information fusion