Lakshmanna Kuruva, Maheswara Rao Avula, D. S. Achanta
{"title":"探测低纬度台站上空多个方向的全球导航卫星系统电离层闪烁","authors":"Lakshmanna Kuruva, Maheswara Rao Avula, D. S. Achanta","doi":"10.1515/jag-2023-0076","DOIUrl":null,"url":null,"abstract":"Abstract Analysis of huge data and detection of scintillation events by human visualization is expensive and time consuming process and also unfeasible in real time. In this paper, classical approaches namely Hard, Semi-Hard and Manual annotation rules are used for detection of the scintillations. For this, one week data is acquired from Septentrio PoLaRx5S GNSS scintillation monitoring Receiver corresponding to various constellations. Seven constellations namely GPS, GLONASS, Galileo, SBAS, BeiDou, QZSS and IRNSS-L5 signals during pre-sunset and post sunset hours are considered. The occurrence of scintillations due to pre-sunset and post sunset period by using hard and semi hard detection rules are analysed. It is observed that the occurrence of scintillations is more in post-sunset hours as compared to pre-sunset hours in all constellations. The performances of Semi Hard and Hard detection rules are compared with manual annotation by using confusion matrices statistical parameters namely accuracy, misclassification and precision. Identified scintillation signals coming from the least and worst affected directions. These results would be useful for early detection of scintillation without human inspection of scintillation events.","PeriodicalId":45494,"journal":{"name":"Journal of Applied Geodesy","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of GNSS ionospheric scintillations in multiple directions over a low latitude station\",\"authors\":\"Lakshmanna Kuruva, Maheswara Rao Avula, D. S. Achanta\",\"doi\":\"10.1515/jag-2023-0076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Analysis of huge data and detection of scintillation events by human visualization is expensive and time consuming process and also unfeasible in real time. In this paper, classical approaches namely Hard, Semi-Hard and Manual annotation rules are used for detection of the scintillations. For this, one week data is acquired from Septentrio PoLaRx5S GNSS scintillation monitoring Receiver corresponding to various constellations. Seven constellations namely GPS, GLONASS, Galileo, SBAS, BeiDou, QZSS and IRNSS-L5 signals during pre-sunset and post sunset hours are considered. The occurrence of scintillations due to pre-sunset and post sunset period by using hard and semi hard detection rules are analysed. It is observed that the occurrence of scintillations is more in post-sunset hours as compared to pre-sunset hours in all constellations. The performances of Semi Hard and Hard detection rules are compared with manual annotation by using confusion matrices statistical parameters namely accuracy, misclassification and precision. Identified scintillation signals coming from the least and worst affected directions. These results would be useful for early detection of scintillation without human inspection of scintillation events.\",\"PeriodicalId\":45494,\"journal\":{\"name\":\"Journal of Applied Geodesy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Geodesy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jag-2023-0076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geodesy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jag-2023-0076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Detection of GNSS ionospheric scintillations in multiple directions over a low latitude station
Abstract Analysis of huge data and detection of scintillation events by human visualization is expensive and time consuming process and also unfeasible in real time. In this paper, classical approaches namely Hard, Semi-Hard and Manual annotation rules are used for detection of the scintillations. For this, one week data is acquired from Septentrio PoLaRx5S GNSS scintillation monitoring Receiver corresponding to various constellations. Seven constellations namely GPS, GLONASS, Galileo, SBAS, BeiDou, QZSS and IRNSS-L5 signals during pre-sunset and post sunset hours are considered. The occurrence of scintillations due to pre-sunset and post sunset period by using hard and semi hard detection rules are analysed. It is observed that the occurrence of scintillations is more in post-sunset hours as compared to pre-sunset hours in all constellations. The performances of Semi Hard and Hard detection rules are compared with manual annotation by using confusion matrices statistical parameters namely accuracy, misclassification and precision. Identified scintillation signals coming from the least and worst affected directions. These results would be useful for early detection of scintillation without human inspection of scintillation events.