{"title":"利用粒子群算法对蛛网状通道散热器进行多目标优化设计","authors":"Hongmei Wei, Ruien Yu","doi":"10.1115/1.4064417","DOIUrl":null,"url":null,"abstract":"\n The cobweb-like microchannel heat sink is acknowledged for its exceptional heat transfer capabilities in comparison to other biomimetic microchannel heat sinks. The objective of this paper is to improve the performance of the cobweb-like microchannel heat sink by optimizing its geometric structure parameters through a multi-objective approach. The Box-Behnken design method was utilized to conduct response surface analysis on the design variables, and the Pareto solution set was obtained by applying the multi-objective particle swarm optimization algorithm to the fitted functions of pressure and temperature. The TOPSIS method was used to select the most appropriate solution from the Pareto solution set. The performance of a microchannel heat sink was evaluated using the computational fluid dynamics (CFD) analysis. The optimized structure of the cobweb-like microchannel heat sink led to a decrease in the average temperature by 3K and a reduction in pressure drop by 1514Pa, as compared to the original design. This significant improvement in the overall performance highlights the importance of a well-designed channel structure in further enhancing the comprehensive performance of the microchannel heat sink.","PeriodicalId":17404,"journal":{"name":"Journal of Thermal Science and Engineering Applications","volume":"37 16","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-objective optimization design of a cobweb-like–channel heat sink using particle swarm algorithm\",\"authors\":\"Hongmei Wei, Ruien Yu\",\"doi\":\"10.1115/1.4064417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The cobweb-like microchannel heat sink is acknowledged for its exceptional heat transfer capabilities in comparison to other biomimetic microchannel heat sinks. The objective of this paper is to improve the performance of the cobweb-like microchannel heat sink by optimizing its geometric structure parameters through a multi-objective approach. The Box-Behnken design method was utilized to conduct response surface analysis on the design variables, and the Pareto solution set was obtained by applying the multi-objective particle swarm optimization algorithm to the fitted functions of pressure and temperature. The TOPSIS method was used to select the most appropriate solution from the Pareto solution set. The performance of a microchannel heat sink was evaluated using the computational fluid dynamics (CFD) analysis. The optimized structure of the cobweb-like microchannel heat sink led to a decrease in the average temperature by 3K and a reduction in pressure drop by 1514Pa, as compared to the original design. This significant improvement in the overall performance highlights the importance of a well-designed channel structure in further enhancing the comprehensive performance of the microchannel heat sink.\",\"PeriodicalId\":17404,\"journal\":{\"name\":\"Journal of Thermal Science and Engineering Applications\",\"volume\":\"37 16\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Science and Engineering Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064417\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Science and Engineering Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4064417","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Multi-objective optimization design of a cobweb-like–channel heat sink using particle swarm algorithm
The cobweb-like microchannel heat sink is acknowledged for its exceptional heat transfer capabilities in comparison to other biomimetic microchannel heat sinks. The objective of this paper is to improve the performance of the cobweb-like microchannel heat sink by optimizing its geometric structure parameters through a multi-objective approach. The Box-Behnken design method was utilized to conduct response surface analysis on the design variables, and the Pareto solution set was obtained by applying the multi-objective particle swarm optimization algorithm to the fitted functions of pressure and temperature. The TOPSIS method was used to select the most appropriate solution from the Pareto solution set. The performance of a microchannel heat sink was evaluated using the computational fluid dynamics (CFD) analysis. The optimized structure of the cobweb-like microchannel heat sink led to a decrease in the average temperature by 3K and a reduction in pressure drop by 1514Pa, as compared to the original design. This significant improvement in the overall performance highlights the importance of a well-designed channel structure in further enhancing the comprehensive performance of the microchannel heat sink.
期刊介绍:
Applications in: Aerospace systems; Gas turbines; Biotechnology; Defense systems; Electronic and photonic equipment; Energy systems; Manufacturing; Refrigeration and air conditioning; Homeland security systems; Micro- and nanoscale devices; Petrochemical processing; Medical systems; Energy efficiency; Sustainability; Solar systems; Combustion systems