A. Malegiannaki, Evangelia Garefalaki, Nikolaos Pellas, M. Kosmidis
{"title":"创伤性脑损伤患者注意力缺陷的虚拟现实评估:有效性和生态有效性","authors":"A. Malegiannaki, Evangelia Garefalaki, Nikolaos Pellas, M. Kosmidis","doi":"10.3390/mti8010003","DOIUrl":null,"url":null,"abstract":"Early detection is crucial for addressing attention deficits commonly associated with Traumatic brain injury (TBI), informing effective rehabilitation planning and intervention. While traditional neuropsychological assessments have been conventionally used to evaluate attention deficits, their limited ecological validity presents notable challenges. This study explores the efficacy and validity of a novel virtual reality test, the Computerized Battery for the Assessment of Attention Disorders (CBAAD), among a cohort of TBI survivors (n = 20), in comparison to a healthy control group (n = 20). Participants, ranging in age from 21 to 62 years, were administered a comprehensive neuropsychological assessment, including the CBAAD and the Attention Related Cognitive Errors Scale. While variations in attentional performance were observed across age cohorts, the study found no statistically significant age-related effects within either group. The CBAAD demonstrated sensitivity to attentional dysfunction in the TBI group, establishing its value as a comprehensive test battery for assessing attention in this specific population. Regression analyses demonstrated the CBAAD’s effectiveness in predicting real-life attentional errors reported by TBI patients. In summary, the CBAAD demonstrates sensitivity to attentional dysfunction in TBI patients and the ability to predict real-world attentional errors, establishing its value as a comprehensive test battery for assessing attention in this specific population. Its implementation holds promise for enhancing the early identification of attentional impairments and facilitating tailored rehabilitation strategies for TBI patients.","PeriodicalId":52297,"journal":{"name":"Multimodal Technologies and Interaction","volume":"14 7","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Virtual Reality Assessment of Attention Deficits in Traumatic Brain Injury: Effectiveness and Ecological Validity\",\"authors\":\"A. Malegiannaki, Evangelia Garefalaki, Nikolaos Pellas, M. Kosmidis\",\"doi\":\"10.3390/mti8010003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Early detection is crucial for addressing attention deficits commonly associated with Traumatic brain injury (TBI), informing effective rehabilitation planning and intervention. While traditional neuropsychological assessments have been conventionally used to evaluate attention deficits, their limited ecological validity presents notable challenges. This study explores the efficacy and validity of a novel virtual reality test, the Computerized Battery for the Assessment of Attention Disorders (CBAAD), among a cohort of TBI survivors (n = 20), in comparison to a healthy control group (n = 20). Participants, ranging in age from 21 to 62 years, were administered a comprehensive neuropsychological assessment, including the CBAAD and the Attention Related Cognitive Errors Scale. While variations in attentional performance were observed across age cohorts, the study found no statistically significant age-related effects within either group. The CBAAD demonstrated sensitivity to attentional dysfunction in the TBI group, establishing its value as a comprehensive test battery for assessing attention in this specific population. Regression analyses demonstrated the CBAAD’s effectiveness in predicting real-life attentional errors reported by TBI patients. In summary, the CBAAD demonstrates sensitivity to attentional dysfunction in TBI patients and the ability to predict real-world attentional errors, establishing its value as a comprehensive test battery for assessing attention in this specific population. Its implementation holds promise for enhancing the early identification of attentional impairments and facilitating tailored rehabilitation strategies for TBI patients.\",\"PeriodicalId\":52297,\"journal\":{\"name\":\"Multimodal Technologies and Interaction\",\"volume\":\"14 7\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multimodal Technologies and Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/mti8010003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimodal Technologies and Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mti8010003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Virtual Reality Assessment of Attention Deficits in Traumatic Brain Injury: Effectiveness and Ecological Validity
Early detection is crucial for addressing attention deficits commonly associated with Traumatic brain injury (TBI), informing effective rehabilitation planning and intervention. While traditional neuropsychological assessments have been conventionally used to evaluate attention deficits, their limited ecological validity presents notable challenges. This study explores the efficacy and validity of a novel virtual reality test, the Computerized Battery for the Assessment of Attention Disorders (CBAAD), among a cohort of TBI survivors (n = 20), in comparison to a healthy control group (n = 20). Participants, ranging in age from 21 to 62 years, were administered a comprehensive neuropsychological assessment, including the CBAAD and the Attention Related Cognitive Errors Scale. While variations in attentional performance were observed across age cohorts, the study found no statistically significant age-related effects within either group. The CBAAD demonstrated sensitivity to attentional dysfunction in the TBI group, establishing its value as a comprehensive test battery for assessing attention in this specific population. Regression analyses demonstrated the CBAAD’s effectiveness in predicting real-life attentional errors reported by TBI patients. In summary, the CBAAD demonstrates sensitivity to attentional dysfunction in TBI patients and the ability to predict real-world attentional errors, establishing its value as a comprehensive test battery for assessing attention in this specific population. Its implementation holds promise for enhancing the early identification of attentional impairments and facilitating tailored rehabilitation strategies for TBI patients.