{"title":"基于液滴的生物打印技术制造肿瘤球体","authors":"Congying Liu, Yuhe Chen, Huawei Chen, Pengfei Zhang","doi":"10.36922/ijb.1214","DOIUrl":null,"url":null,"abstract":"Cancer is now one of the leading causes of mortality worldwide, and the cancer treatment development is still slow due to the lack of efficient in vitro tumor models for studying tumorigenesis and facilitating drug development. Multicellular tumor spheroids can recapitulate the critical properties of tumors in vivo, including spatial organization, physiological responses, and metabolism, and are considered powerful platform for disease study and drug screening. Although several spheroid fabrication methods have been developed, most of them result in uncontrolled cell aggregations, yielding spheroids of variable size and function. Droplet-based bioprinting is capable of depositing cells in spatiotemporal manner so as to control the composition and distribution of printed biological constructs, thereby facilitating high-throughput fabrication of complicated and reproducible tumor spheroids. In this review, we introduce the progress of droplet-based bioprinting technology for the fabrication of tumor spheroids. First, different droplet-based bioprinting technologies are compared in terms of their strengths and shortcomings, which should be taken into account while fabricating tumor spheroids. Second, the latest advances in modeling distinct types of cancers and the enabled applications with tumor spheroids are summarized. Finally, we discuss the challenges and potentials revolving around the advances of bioprinting technology, improvement of spheroid quality, and integration of different technologies.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"35 10","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Droplet-based bioprinting for fabrication of tumor spheroids\",\"authors\":\"Congying Liu, Yuhe Chen, Huawei Chen, Pengfei Zhang\",\"doi\":\"10.36922/ijb.1214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cancer is now one of the leading causes of mortality worldwide, and the cancer treatment development is still slow due to the lack of efficient in vitro tumor models for studying tumorigenesis and facilitating drug development. Multicellular tumor spheroids can recapitulate the critical properties of tumors in vivo, including spatial organization, physiological responses, and metabolism, and are considered powerful platform for disease study and drug screening. Although several spheroid fabrication methods have been developed, most of them result in uncontrolled cell aggregations, yielding spheroids of variable size and function. Droplet-based bioprinting is capable of depositing cells in spatiotemporal manner so as to control the composition and distribution of printed biological constructs, thereby facilitating high-throughput fabrication of complicated and reproducible tumor spheroids. In this review, we introduce the progress of droplet-based bioprinting technology for the fabrication of tumor spheroids. First, different droplet-based bioprinting technologies are compared in terms of their strengths and shortcomings, which should be taken into account while fabricating tumor spheroids. Second, the latest advances in modeling distinct types of cancers and the enabled applications with tumor spheroids are summarized. Finally, we discuss the challenges and potentials revolving around the advances of bioprinting technology, improvement of spheroid quality, and integration of different technologies.\",\"PeriodicalId\":48522,\"journal\":{\"name\":\"International Journal of Bioprinting\",\"volume\":\"35 10\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bioprinting\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.36922/ijb.1214\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioprinting","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.36922/ijb.1214","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Droplet-based bioprinting for fabrication of tumor spheroids
Cancer is now one of the leading causes of mortality worldwide, and the cancer treatment development is still slow due to the lack of efficient in vitro tumor models for studying tumorigenesis and facilitating drug development. Multicellular tumor spheroids can recapitulate the critical properties of tumors in vivo, including spatial organization, physiological responses, and metabolism, and are considered powerful platform for disease study and drug screening. Although several spheroid fabrication methods have been developed, most of them result in uncontrolled cell aggregations, yielding spheroids of variable size and function. Droplet-based bioprinting is capable of depositing cells in spatiotemporal manner so as to control the composition and distribution of printed biological constructs, thereby facilitating high-throughput fabrication of complicated and reproducible tumor spheroids. In this review, we introduce the progress of droplet-based bioprinting technology for the fabrication of tumor spheroids. First, different droplet-based bioprinting technologies are compared in terms of their strengths and shortcomings, which should be taken into account while fabricating tumor spheroids. Second, the latest advances in modeling distinct types of cancers and the enabled applications with tumor spheroids are summarized. Finally, we discuss the challenges and potentials revolving around the advances of bioprinting technology, improvement of spheroid quality, and integration of different technologies.
期刊介绍:
The International Journal of Bioprinting is a globally recognized publication that focuses on the advancements, scientific discoveries, and practical implementations of Bioprinting. Bioprinting, in simple terms, involves the utilization of 3D printing technology and materials that contain living cells or biological components to fabricate tissues or other biotechnological products. Our journal encompasses interdisciplinary research that spans across technology, science, and clinical applications within the expansive realm of Bioprinting.