将基于生物材料的三维生物打印技术应用于芯片上器官的制造

IF 6.8 3区 医学 Q1 ENGINEERING, BIOMEDICAL International Journal of Bioprinting Pub Date : 2024-01-02 DOI:10.36922/ijb.1972
Joeng Ju Kim, Mihyeon Bae, Jongmin Kim, Dong-Woo Cho
{"title":"将基于生物材料的三维生物打印技术应用于芯片上器官的制造","authors":"Joeng Ju Kim, Mihyeon Bae, Jongmin Kim, Dong-Woo Cho","doi":"10.36922/ijb.1972","DOIUrl":null,"url":null,"abstract":"An organ-on-a-chip is a microfluidic device that simulates the microenvironment of organs, facilitating the study of human physiology and disease mechanisms. Through the integration of tissue engineering and micromachining technologies, it effectively manages the cellular microenvironment and implements tissue-specific functions and physiological responses with high fidelity. Several factors must be appropriately considered in the fabrication of an organ-on-a-chip, including the choice of biomaterials to simulate the extracellular matrix (ECM), selection of cells constituting the target organ, incorporation of humanized design to realize the primary function and structure of the organ, and the use of appropriate biofabrication methods to build a tissue-specific environment. Notably, three-dimensional (3D) bioprinting has emerged as a promising method for biofabricating organ-on-a-chip. Three-dimensional bioprinting offers versatility in adapting to various biomaterials with different physical properties, allowing precise control of 3D cell arrays and facilitating cyclic movements of fluidic flow within microfluidic platforms. These capabilities enable the precise fabrication of organ-on-a-chip that reflects tissue-specific functions and microenvironments. Additionally, 3D-bioprinted organ-on-a-chip can serve as a disease-on-a-chip platform, achieved through the implementation of pathophysiological environments and integration with devices such as bioreactors. Their significance in pharmacology research lies in their exceptional resemblance to the 3D microenvironment structure of actual organs, which are conducive for the validation of sequential mechanism of drug action. This review describes recent examples of organ-on-a-chip applications for various organs and state-of-the-art 3D bioprinting techniques employed in organ-on-a-chip fabrication. The discussion extends to the future prospects of this technology, encompassing aspects such as commercialization through mass production and its potential application in personalized medicine or drug-screening platforms. Serving as a relevant guide, this review offers insights for future research and developments in in vitro micromodel fabrication.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"48 10","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of biomaterial-based three-dimensional bioprinting for organ-on-a-chip fabrication\",\"authors\":\"Joeng Ju Kim, Mihyeon Bae, Jongmin Kim, Dong-Woo Cho\",\"doi\":\"10.36922/ijb.1972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An organ-on-a-chip is a microfluidic device that simulates the microenvironment of organs, facilitating the study of human physiology and disease mechanisms. Through the integration of tissue engineering and micromachining technologies, it effectively manages the cellular microenvironment and implements tissue-specific functions and physiological responses with high fidelity. Several factors must be appropriately considered in the fabrication of an organ-on-a-chip, including the choice of biomaterials to simulate the extracellular matrix (ECM), selection of cells constituting the target organ, incorporation of humanized design to realize the primary function and structure of the organ, and the use of appropriate biofabrication methods to build a tissue-specific environment. Notably, three-dimensional (3D) bioprinting has emerged as a promising method for biofabricating organ-on-a-chip. Three-dimensional bioprinting offers versatility in adapting to various biomaterials with different physical properties, allowing precise control of 3D cell arrays and facilitating cyclic movements of fluidic flow within microfluidic platforms. These capabilities enable the precise fabrication of organ-on-a-chip that reflects tissue-specific functions and microenvironments. Additionally, 3D-bioprinted organ-on-a-chip can serve as a disease-on-a-chip platform, achieved through the implementation of pathophysiological environments and integration with devices such as bioreactors. Their significance in pharmacology research lies in their exceptional resemblance to the 3D microenvironment structure of actual organs, which are conducive for the validation of sequential mechanism of drug action. This review describes recent examples of organ-on-a-chip applications for various organs and state-of-the-art 3D bioprinting techniques employed in organ-on-a-chip fabrication. The discussion extends to the future prospects of this technology, encompassing aspects such as commercialization through mass production and its potential application in personalized medicine or drug-screening platforms. Serving as a relevant guide, this review offers insights for future research and developments in in vitro micromodel fabrication.\",\"PeriodicalId\":48522,\"journal\":{\"name\":\"International Journal of Bioprinting\",\"volume\":\"48 10\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bioprinting\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.36922/ijb.1972\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioprinting","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.36922/ijb.1972","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

器官芯片是一种模拟器官微环境的微流控装置,有助于研究人体生理和疾病机制。通过整合组织工程和微机械加工技术,它能有效管理细胞微环境,高保真地实现组织特异功能和生理反应。制造芯片上的器官必须适当考虑几个因素,包括选择生物材料来模拟细胞外基质(ECM)、选择构成目标器官的细胞、结合人性化设计来实现器官的主要功能和结构,以及使用适当的生物制造方法来构建组织特异性环境。值得注意的是,三维(3D)生物打印已成为生物制造片上器官的一种有前途的方法。三维生物打印具有适应各种不同物理性质生物材料的多功能性,可精确控制三维细胞阵列,并促进微流体平台内流体流动的循环运动。有了这些功能,就能精确制造出反映组织特异功能和微环境的芯片器官。此外,三维生物打印器官芯片还可作为疾病芯片平台,通过实施病理生理环境并与生物反应器等设备集成来实现。它们在药理学研究中的意义在于其与实际器官的三维微环境结构极为相似,有利于验证药物作用的顺序机制。本综述介绍了器官芯片应用于各种器官的最新实例,以及器官芯片制造中采用的最先进的三维生物打印技术。讨论延伸到这项技术的未来前景,包括通过大规模生产实现商业化及其在个性化医疗或药物筛选平台中的潜在应用等方面。作为相关指南,本综述为体外微模型制造的未来研究和发展提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of biomaterial-based three-dimensional bioprinting for organ-on-a-chip fabrication
An organ-on-a-chip is a microfluidic device that simulates the microenvironment of organs, facilitating the study of human physiology and disease mechanisms. Through the integration of tissue engineering and micromachining technologies, it effectively manages the cellular microenvironment and implements tissue-specific functions and physiological responses with high fidelity. Several factors must be appropriately considered in the fabrication of an organ-on-a-chip, including the choice of biomaterials to simulate the extracellular matrix (ECM), selection of cells constituting the target organ, incorporation of humanized design to realize the primary function and structure of the organ, and the use of appropriate biofabrication methods to build a tissue-specific environment. Notably, three-dimensional (3D) bioprinting has emerged as a promising method for biofabricating organ-on-a-chip. Three-dimensional bioprinting offers versatility in adapting to various biomaterials with different physical properties, allowing precise control of 3D cell arrays and facilitating cyclic movements of fluidic flow within microfluidic platforms. These capabilities enable the precise fabrication of organ-on-a-chip that reflects tissue-specific functions and microenvironments. Additionally, 3D-bioprinted organ-on-a-chip can serve as a disease-on-a-chip platform, achieved through the implementation of pathophysiological environments and integration with devices such as bioreactors. Their significance in pharmacology research lies in their exceptional resemblance to the 3D microenvironment structure of actual organs, which are conducive for the validation of sequential mechanism of drug action. This review describes recent examples of organ-on-a-chip applications for various organs and state-of-the-art 3D bioprinting techniques employed in organ-on-a-chip fabrication. The discussion extends to the future prospects of this technology, encompassing aspects such as commercialization through mass production and its potential application in personalized medicine or drug-screening platforms. Serving as a relevant guide, this review offers insights for future research and developments in in vitro micromodel fabrication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.90
自引率
4.80%
发文量
81
期刊介绍: The International Journal of Bioprinting is a globally recognized publication that focuses on the advancements, scientific discoveries, and practical implementations of Bioprinting. Bioprinting, in simple terms, involves the utilization of 3D printing technology and materials that contain living cells or biological components to fabricate tissues or other biotechnological products. Our journal encompasses interdisciplinary research that spans across technology, science, and clinical applications within the expansive realm of Bioprinting.
期刊最新文献
Additive-manufactured synthetic bone model with biomimicking tunable mechanical properties for evaluation of medical implants Designing a 3D-printed medical implant with mechanically macrostructural topology and microbionic lattices: A novel wedge-shaped spacer for high tibial osteotomy and biomechanical study PBF-LB fabrication of microgrooves for induction of osteogenic differentiation of human mesenchymal stem cells Building a degradable scaffold with 3D printing using Masquelet technique to promote osteoblast differentiation and angiogenesis in chronic tibial osteomyelitis with bone defects Design of biomedical gradient porous scaffold via a minimal surface dual-unit continuous transition connection strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1