V. Athanasiadis, Theodoros G. Chatzimitakos, Konstantina Kotsou, Dimitris Kalompatsios, Eleni Bozinou, S. Lalas
{"title":"黑刺李(Prunus spinosa)和甜樱桃(Prunus avium)仁油的利用:化学成分、抗氧化活性和氧化稳定性评估","authors":"V. Athanasiadis, Theodoros G. Chatzimitakos, Konstantina Kotsou, Dimitris Kalompatsios, Eleni Bozinou, S. Lalas","doi":"10.3390/biomass4010003","DOIUrl":null,"url":null,"abstract":"Prunus avium L. and Prunus spinosa L. are valuable fruit-bearing trees known for their bioactive compounds and medicinal properties. However, limited research exists regarding their kernel oils. This study aimed to compare the chemical composition, quality parameters, and bioactive potential of the kernel oils extracted from Prunus avium L. and Prunus spinosa L. The kernel oils’ fatty acid and tocopherol profiles were characterized, and the presence of bioactive compounds were identified and quantified. Total polyphenol content (TPC) and antioxidant activity (AAC) were also measured, indicating the presence of bioactive compounds in both oils. Additionally, the main quality parameters, including oxidative status, were evaluated. The fatty acid analysis revealed a higher proportion of polyunsaturated fatty acids compared to monounsaturated fatty acids in both kernel oil samples. Linoleic acid (57–64%) and oleic acid (18–29%) were the major fatty acids in both Prunus avium L. and Prunus spinosa L. kernel oils. α-Eleostearic acid (11.87%) was quantified only in Prunus avium kernel oil. Furthermore, the α-, β-, γ-, and δ-tocopherol content were determined, and it was found that both kernel oils contained γ-tocopherol as the major tocopherol (~204–237 mg/Kg). TPC in Prunus avium L. kernel oil was measured at 9.5 mg gallic acid equivalents (GAE)/Kg and recorded as ~316% higher TPC than Prunus spinosa L. kernel oil. However, the recorded AAC were 11.87 and 14.22 μmol Trolox equivalent (TE)/Kg oil, respectively. Both oils recorded low peroxide values (~1.50 mmol H2O2/Kg), and low TBARS value (~0.4 mmol malondialdehyde equivalents, MDAE/Kg oil), but high p-anisidine value (23–32). The results indicated that both Prunus avium L. and Prunus spinosa L. kernel oils exhibited unique chemical compositions.","PeriodicalId":100179,"journal":{"name":"Biomass","volume":"57 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilization of Blackthorn Plums (Prunus spinosa) and Sweet Cherry (Prunus avium) Kernel Oil: Assessment of Chemical Composition, Antioxidant Activity, and Oxidative Stability\",\"authors\":\"V. Athanasiadis, Theodoros G. Chatzimitakos, Konstantina Kotsou, Dimitris Kalompatsios, Eleni Bozinou, S. Lalas\",\"doi\":\"10.3390/biomass4010003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prunus avium L. and Prunus spinosa L. are valuable fruit-bearing trees known for their bioactive compounds and medicinal properties. However, limited research exists regarding their kernel oils. This study aimed to compare the chemical composition, quality parameters, and bioactive potential of the kernel oils extracted from Prunus avium L. and Prunus spinosa L. The kernel oils’ fatty acid and tocopherol profiles were characterized, and the presence of bioactive compounds were identified and quantified. Total polyphenol content (TPC) and antioxidant activity (AAC) were also measured, indicating the presence of bioactive compounds in both oils. Additionally, the main quality parameters, including oxidative status, were evaluated. The fatty acid analysis revealed a higher proportion of polyunsaturated fatty acids compared to monounsaturated fatty acids in both kernel oil samples. Linoleic acid (57–64%) and oleic acid (18–29%) were the major fatty acids in both Prunus avium L. and Prunus spinosa L. kernel oils. α-Eleostearic acid (11.87%) was quantified only in Prunus avium kernel oil. Furthermore, the α-, β-, γ-, and δ-tocopherol content were determined, and it was found that both kernel oils contained γ-tocopherol as the major tocopherol (~204–237 mg/Kg). TPC in Prunus avium L. kernel oil was measured at 9.5 mg gallic acid equivalents (GAE)/Kg and recorded as ~316% higher TPC than Prunus spinosa L. kernel oil. However, the recorded AAC were 11.87 and 14.22 μmol Trolox equivalent (TE)/Kg oil, respectively. Both oils recorded low peroxide values (~1.50 mmol H2O2/Kg), and low TBARS value (~0.4 mmol malondialdehyde equivalents, MDAE/Kg oil), but high p-anisidine value (23–32). The results indicated that both Prunus avium L. and Prunus spinosa L. kernel oils exhibited unique chemical compositions.\",\"PeriodicalId\":100179,\"journal\":{\"name\":\"Biomass\",\"volume\":\"57 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomass\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.3390/biomass4010003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.3390/biomass4010003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
Prunus avium L. 和 Prunus spinosa L. 是珍贵的果树,因其生物活性化合物和药用特性而闻名。然而,有关它们果仁油的研究却很有限。本研究旨在比较从梅花和刺梅中提取的果仁油的化学成分、质量参数和生物活性潜力。此外,还测定了多酚总含量(TPC)和抗氧化活性(AAC),表明这两种油中都含有生物活性化合物。此外,还对包括氧化状态在内的主要质量参数进行了评估。脂肪酸分析表明,与单不饱和脂肪酸相比,两种核仁油样本中多不饱和脂肪酸的比例更高。亚油酸(57-64%)和油酸(18-29%)是梅果仁油和刺果仁油中的主要脂肪酸。此外,还测定了α-、β-、γ-和δ-生育酚的含量,发现两种核仁油都以γ-生育酚为主要生育酚(约 204-237 毫克/千克)。经测定,Prunus avium L. 核仁油中的 TPC 为 9.5 毫克没食子酸当量(GAE)/千克,比 Prunus spinosa L. 核仁油中的 TPC 高出约 316%。然而,记录的 AAC 分别为 11.87 和 14.22 μmol Trolox 当量(TE)/千克油。两种油的过氧化值(~1.50 mmol H2O2/Kg)和 TBARS 值(~0.4 mmol 丙二醛当量,MDAE/Kg 油)都很低,但对甲氧基苯胺值却很高(23-32)。结果表明,阿维菌素和刺五加果仁油都表现出独特的化学成分。
Utilization of Blackthorn Plums (Prunus spinosa) and Sweet Cherry (Prunus avium) Kernel Oil: Assessment of Chemical Composition, Antioxidant Activity, and Oxidative Stability
Prunus avium L. and Prunus spinosa L. are valuable fruit-bearing trees known for their bioactive compounds and medicinal properties. However, limited research exists regarding their kernel oils. This study aimed to compare the chemical composition, quality parameters, and bioactive potential of the kernel oils extracted from Prunus avium L. and Prunus spinosa L. The kernel oils’ fatty acid and tocopherol profiles were characterized, and the presence of bioactive compounds were identified and quantified. Total polyphenol content (TPC) and antioxidant activity (AAC) were also measured, indicating the presence of bioactive compounds in both oils. Additionally, the main quality parameters, including oxidative status, were evaluated. The fatty acid analysis revealed a higher proportion of polyunsaturated fatty acids compared to monounsaturated fatty acids in both kernel oil samples. Linoleic acid (57–64%) and oleic acid (18–29%) were the major fatty acids in both Prunus avium L. and Prunus spinosa L. kernel oils. α-Eleostearic acid (11.87%) was quantified only in Prunus avium kernel oil. Furthermore, the α-, β-, γ-, and δ-tocopherol content were determined, and it was found that both kernel oils contained γ-tocopherol as the major tocopherol (~204–237 mg/Kg). TPC in Prunus avium L. kernel oil was measured at 9.5 mg gallic acid equivalents (GAE)/Kg and recorded as ~316% higher TPC than Prunus spinosa L. kernel oil. However, the recorded AAC were 11.87 and 14.22 μmol Trolox equivalent (TE)/Kg oil, respectively. Both oils recorded low peroxide values (~1.50 mmol H2O2/Kg), and low TBARS value (~0.4 mmol malondialdehyde equivalents, MDAE/Kg oil), but high p-anisidine value (23–32). The results indicated that both Prunus avium L. and Prunus spinosa L. kernel oils exhibited unique chemical compositions.