磁感应局部结构和体积分数对带有铁流体液滴嵌入件的弹性体样品电磁特性的影响

IF 2.6 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Magnetochemistry Pub Date : 2024-01-02 DOI:10.3390/magnetochemistry10010004
C. Marin, I. Malaescu
{"title":"磁感应局部结构和体积分数对带有铁流体液滴嵌入件的弹性体样品电磁特性的影响","authors":"C. Marin, I. Malaescu","doi":"10.3390/magnetochemistry10010004","DOIUrl":null,"url":null,"abstract":"The magnetic permeability (μ), dielectric permittivity (ε) and electrical conductivity (σ) of six elastomer samples obtained by mixing silicone rubber (RTV-530) with a kerosene-based ferrofluid in different volume fractions (φ), 1.31%, 2.59% and 3.84%, were determined using complex impedance measurements over a frequency range of 500 Hz–2 MHz. Three samples (A0, B0 and C0) were manufactured in the absence of a magnetic field, and the other three samples (Ah, Bh and Ch) were manufactured in the presence of a magnetic field, H = 43 kA/m. The component μ″ of the complex effective magnetic permeability of all samples presents a maximum at a frequency, fmax, that moves to higher values by increasing φ, with this maximum being attributed to Brownian relaxation processes. The conductivity spectrum, σ (f), of all samples follows the Jonscher universal law, which allows for both the determination of the static conductivity, σDC, and the barrier energy of the electrical conduction process, Wm. For the same φ, Wm is lower, and σDC is higher in the samples Ah, Bh and Ch than in the samples A0, B0 and C0. The performed study is useful in manufacturing elastomers with predetermined properties and for possible applications such as magneto-dielectric flexible electronic devices, which can be controlled by the volume fraction of particles or by an external magnetic field.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":"122 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of Magnetically Induced Local Structure and Volume Fraction on the Electromagnetic Properties of Elastomer Samples with Ferrofluid Droplet Inserts\",\"authors\":\"C. Marin, I. Malaescu\",\"doi\":\"10.3390/magnetochemistry10010004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The magnetic permeability (μ), dielectric permittivity (ε) and electrical conductivity (σ) of six elastomer samples obtained by mixing silicone rubber (RTV-530) with a kerosene-based ferrofluid in different volume fractions (φ), 1.31%, 2.59% and 3.84%, were determined using complex impedance measurements over a frequency range of 500 Hz–2 MHz. Three samples (A0, B0 and C0) were manufactured in the absence of a magnetic field, and the other three samples (Ah, Bh and Ch) were manufactured in the presence of a magnetic field, H = 43 kA/m. The component μ″ of the complex effective magnetic permeability of all samples presents a maximum at a frequency, fmax, that moves to higher values by increasing φ, with this maximum being attributed to Brownian relaxation processes. The conductivity spectrum, σ (f), of all samples follows the Jonscher universal law, which allows for both the determination of the static conductivity, σDC, and the barrier energy of the electrical conduction process, Wm. For the same φ, Wm is lower, and σDC is higher in the samples Ah, Bh and Ch than in the samples A0, B0 and C0. The performed study is useful in manufacturing elastomers with predetermined properties and for possible applications such as magneto-dielectric flexible electronic devices, which can be controlled by the volume fraction of particles or by an external magnetic field.\",\"PeriodicalId\":18194,\"journal\":{\"name\":\"Magnetochemistry\",\"volume\":\"122 3\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/magnetochemistry10010004\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/magnetochemistry10010004","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

通过在 500 Hz-2 MHz 频率范围内进行复阻抗测量,测定了硅橡胶 (RTV-530) 与煤油基铁流体以不同体积分数 (φ)(1.31%、2.59% 和 3.84%)混合后得到的六种弹性体样品的磁导率 (μ)、介电常数 (ε) 和电导率 (σ)。三个样品(A0、B0 和 C0)是在无磁场条件下制造的,另外三个样品(Ah、Bh 和 Ch)是在有磁场条件下制造的,磁场 H = 43 kA/m。所有样品的复合有效磁导率分量 μ″ 都在频率 fmax 处出现一个最大值,随着 φ 的增大,其值也随之增大,这个最大值归因于布朗弛豫过程。所有样品的电导率频谱 σ (f) 都遵循琼谢尔普遍规律,因此可以同时确定静态电导率 σDC 和导电过程的势垒能 Wm。所做的研究有助于制造具有预定特性的弹性体,并可用于磁介质柔性电子器件等应用,这些应用可通过颗粒的体积分数或外部磁场来控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Effect of Magnetically Induced Local Structure and Volume Fraction on the Electromagnetic Properties of Elastomer Samples with Ferrofluid Droplet Inserts
The magnetic permeability (μ), dielectric permittivity (ε) and electrical conductivity (σ) of six elastomer samples obtained by mixing silicone rubber (RTV-530) with a kerosene-based ferrofluid in different volume fractions (φ), 1.31%, 2.59% and 3.84%, were determined using complex impedance measurements over a frequency range of 500 Hz–2 MHz. Three samples (A0, B0 and C0) were manufactured in the absence of a magnetic field, and the other three samples (Ah, Bh and Ch) were manufactured in the presence of a magnetic field, H = 43 kA/m. The component μ″ of the complex effective magnetic permeability of all samples presents a maximum at a frequency, fmax, that moves to higher values by increasing φ, with this maximum being attributed to Brownian relaxation processes. The conductivity spectrum, σ (f), of all samples follows the Jonscher universal law, which allows for both the determination of the static conductivity, σDC, and the barrier energy of the electrical conduction process, Wm. For the same φ, Wm is lower, and σDC is higher in the samples Ah, Bh and Ch than in the samples A0, B0 and C0. The performed study is useful in manufacturing elastomers with predetermined properties and for possible applications such as magneto-dielectric flexible electronic devices, which can be controlled by the volume fraction of particles or by an external magnetic field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Magnetochemistry
Magnetochemistry Chemistry-Chemistry (miscellaneous)
CiteScore
3.90
自引率
11.10%
发文量
145
审稿时长
11 weeks
期刊介绍: Magnetochemistry (ISSN 2312-7481) is a unique international, scientific open access journal on molecular magnetism, the relationship between chemical structure and magnetism and magnetic materials. Magnetochemistry publishes research articles, short communications and reviews. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Preparation and Optimization of the Adsorbent for Phosphorus Removal Using the Response Surface Method The Effect of Magnetically Induced Local Structure and Volume Fraction on the Electromagnetic Properties of Elastomer Samples with Ferrofluid Droplet Inserts Correction: Li et al. Dry Friction Performances of MoNx Coatings Deposited by High–Power Pulsed Magnetron Sputtering. Magnetochemistry 2023, 9, 60 The Influence of Viscosity on Heat Dissipation under Conditions of the High-Frequency Oscillating Magnetic Field Functional Molecular Materials Insights
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1