通过关注机制检测捆绑推荐中的异常项目

IF 3.2 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS High-Confidence Computing Pub Date : 2024-01-05 DOI:10.1016/j.hcc.2024.100200
Yuan Liang
{"title":"通过关注机制检测捆绑推荐中的异常项目","authors":"Yuan Liang","doi":"10.1016/j.hcc.2024.100200","DOIUrl":null,"url":null,"abstract":"<div><p>Bundle recommendation offers users more holistic insights by recommending multiple compatible items at once. However, the intricate correlations between items, varied user preferences, and the pronounced data sparsity in combinations present significant challenges for bundle recommendation algorithms. Furthermore, current bundle recommendation methods fail to identify mismatched items within a given set, a process termed as “outlier item detection”. These outlier items are those with the weakest correlations within a bundle. Identifying them can aid users in refining their item combinations. While the correlation among items can predict the detection of such outliers, the adaptability of combinations might not be adequately responsive to shifts in individual items during the learning phase. This limitation can hinder the algorithm’s performance. To tackle these challenges, we introduce an encoder–decoder architecture tailored for outlier item detection. The encoder learns potential item correlations through a self-attention mechanism. Concurrently, the decoder garners efficient inference frameworks by directly assessing item anomalies. We have validated the efficacy and efficiency of our proposed algorithm using real-world datasets.</p></div>","PeriodicalId":100605,"journal":{"name":"High-Confidence Computing","volume":"4 3","pages":"Article 100200"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667295224000035/pdfft?md5=efa091405aad1bbcc69d7febeec7012b&pid=1-s2.0-S2667295224000035-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Outlier item detection in bundle recommendation via the attention mechanism\",\"authors\":\"Yuan Liang\",\"doi\":\"10.1016/j.hcc.2024.100200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bundle recommendation offers users more holistic insights by recommending multiple compatible items at once. However, the intricate correlations between items, varied user preferences, and the pronounced data sparsity in combinations present significant challenges for bundle recommendation algorithms. Furthermore, current bundle recommendation methods fail to identify mismatched items within a given set, a process termed as “outlier item detection”. These outlier items are those with the weakest correlations within a bundle. Identifying them can aid users in refining their item combinations. While the correlation among items can predict the detection of such outliers, the adaptability of combinations might not be adequately responsive to shifts in individual items during the learning phase. This limitation can hinder the algorithm’s performance. To tackle these challenges, we introduce an encoder–decoder architecture tailored for outlier item detection. The encoder learns potential item correlations through a self-attention mechanism. Concurrently, the decoder garners efficient inference frameworks by directly assessing item anomalies. We have validated the efficacy and efficiency of our proposed algorithm using real-world datasets.</p></div>\",\"PeriodicalId\":100605,\"journal\":{\"name\":\"High-Confidence Computing\",\"volume\":\"4 3\",\"pages\":\"Article 100200\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667295224000035/pdfft?md5=efa091405aad1bbcc69d7febeec7012b&pid=1-s2.0-S2667295224000035-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High-Confidence Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667295224000035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Confidence Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667295224000035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

捆绑推荐通过同时推荐多个兼容项目为用户提供更全面的洞察。然而,项目之间错综复杂的相关性、不同的用户偏好以及组合中明显的数据稀疏性给捆绑推荐算法带来了巨大挑战。此外,当前的捆绑推荐方法无法识别给定集合中不匹配的项目,这一过程被称为 "离群项目检测"。这些离群项是捆绑推荐中相关性最弱的项目。识别它们可以帮助用户完善其项目组合。虽然项目之间的相关性可以预测这类离群项的检测,但在学习阶段,组合的适应性可能无法充分应对单个项目的变化。这种局限性会妨碍算法的性能。为了应对这些挑战,我们引入了一种为离群项检测量身定制的编码器-解码器架构。编码器通过自我关注机制学习潜在的项目相关性。同时,解码器通过直接评估项目异常情况来获得高效的推理框架。我们利用现实世界的数据集验证了我们提出的算法的功效和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Outlier item detection in bundle recommendation via the attention mechanism

Bundle recommendation offers users more holistic insights by recommending multiple compatible items at once. However, the intricate correlations between items, varied user preferences, and the pronounced data sparsity in combinations present significant challenges for bundle recommendation algorithms. Furthermore, current bundle recommendation methods fail to identify mismatched items within a given set, a process termed as “outlier item detection”. These outlier items are those with the weakest correlations within a bundle. Identifying them can aid users in refining their item combinations. While the correlation among items can predict the detection of such outliers, the adaptability of combinations might not be adequately responsive to shifts in individual items during the learning phase. This limitation can hinder the algorithm’s performance. To tackle these challenges, we introduce an encoder–decoder architecture tailored for outlier item detection. The encoder learns potential item correlations through a self-attention mechanism. Concurrently, the decoder garners efficient inference frameworks by directly assessing item anomalies. We have validated the efficacy and efficiency of our proposed algorithm using real-world datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
期刊最新文献
Erratum to “Exploring Personalized Internet of Things (PIoT), social connectivity, and Artificial Social Intelligence (ASI): A survey” [High-Confidence Computing 4 (2024) 100242] Identity-based threshold (multi) signature with private accountability for privacy-preserving blockchain Navigating the Digital Twin Network landscape: A survey on architecture, applications, privacy and security Erratum to “An effective digital audio watermarking using a deep convolutional neural network with a search location optimization algorithm for improvement in Robustness and Imperceptibility” [High-Confid. Comput. 3 (2023) 100153] A lightweight practical consensus mechanism for supply chain blockchain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1