通过补充磁性共热解生物炭提高污泥厌氧消化的沼气产量:剂量反应和合成代谢

Likui Feng, Huizhi Mu, Lingxin Zhao, Shufei He, Yu Liu, Zhelu Gao, Tianyi Hu, Qingliang Zhao, Liangliang Wei
{"title":"通过补充磁性共热解生物炭提高污泥厌氧消化的沼气产量:剂量反应和合成代谢","authors":"Likui Feng,&nbsp;Huizhi Mu,&nbsp;Lingxin Zhao,&nbsp;Shufei He,&nbsp;Yu Liu,&nbsp;Zhelu Gao,&nbsp;Tianyi Hu,&nbsp;Qingliang Zhao,&nbsp;Liangliang Wei","doi":"10.1016/j.efmat.2023.12.003","DOIUrl":null,"url":null,"abstract":"<div><div>The addition of conductive materials to promote anaerobic digestion (AD) via direct interspecies electron transfer (DIET) has been attracted extensive attention, whereas seldom focused on the effect of co-pyrolysis biochar on sewage sludge AD. Here, a novel co-pyrolysis biochar derived from oil sludge and wheat straw was successfully applied in improving methane production. Experimental results suggested that the co-pyrolysis of wheat straw with oil sludge would increase the surface area of biochar, benefited for the methane production improvement. As high as 144.05 ​mL ​(g ​VS) <sup>−1</sup> accumulative methane productivity and fast volatile fatty acids (VFAs) mainly acetic acids degradation rate was detected under the optimal operational condition with 1.6 ​g BC25 ​% (wheat straw: oil sludge ​= ​1:3) additive. Generally, the strong electron accepting capacity (71.8 μmol e<sup>−</sup> g<sup>−1</sup>) and donating capacity (27.5 μmol e<sup>−</sup> g<sup>−1</sup>) resulted from magnetic features and oxygen containing functional groups of co-pyrolysis biochar facilitated DIET process for boosting methane yield. Furthermore, co-pyrolysis biochar supplied sufficient trace elements (Ni, Cu and Zn) for activating the coenzyme F420, protease and electron transport system for accelerating methane yield. Microbial and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated acetoclastic and hydrogenotrophic pathways were both promoted due to the enrichment of archaea including <em>Methanothrix</em>, <em>Methanobacterium</em>, and <em>Methanomassiliicoccus</em>, as well as the typical bacteria of <em>Chloroflexi</em>. The fundamental understanding of underlying mechanisms is critical for the practical application of co-pyrolysis biochar in AD field.</div></div>","PeriodicalId":100481,"journal":{"name":"Environmental Functional Materials","volume":"2 3","pages":"Pages 201-212"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of biogas production from sludge anaerobic digestion via supplementing magnetic co-pyrolysis biochar: Dosage response and syntrophic metabolism\",\"authors\":\"Likui Feng,&nbsp;Huizhi Mu,&nbsp;Lingxin Zhao,&nbsp;Shufei He,&nbsp;Yu Liu,&nbsp;Zhelu Gao,&nbsp;Tianyi Hu,&nbsp;Qingliang Zhao,&nbsp;Liangliang Wei\",\"doi\":\"10.1016/j.efmat.2023.12.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The addition of conductive materials to promote anaerobic digestion (AD) via direct interspecies electron transfer (DIET) has been attracted extensive attention, whereas seldom focused on the effect of co-pyrolysis biochar on sewage sludge AD. Here, a novel co-pyrolysis biochar derived from oil sludge and wheat straw was successfully applied in improving methane production. Experimental results suggested that the co-pyrolysis of wheat straw with oil sludge would increase the surface area of biochar, benefited for the methane production improvement. As high as 144.05 ​mL ​(g ​VS) <sup>−1</sup> accumulative methane productivity and fast volatile fatty acids (VFAs) mainly acetic acids degradation rate was detected under the optimal operational condition with 1.6 ​g BC25 ​% (wheat straw: oil sludge ​= ​1:3) additive. Generally, the strong electron accepting capacity (71.8 μmol e<sup>−</sup> g<sup>−1</sup>) and donating capacity (27.5 μmol e<sup>−</sup> g<sup>−1</sup>) resulted from magnetic features and oxygen containing functional groups of co-pyrolysis biochar facilitated DIET process for boosting methane yield. Furthermore, co-pyrolysis biochar supplied sufficient trace elements (Ni, Cu and Zn) for activating the coenzyme F420, protease and electron transport system for accelerating methane yield. Microbial and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated acetoclastic and hydrogenotrophic pathways were both promoted due to the enrichment of archaea including <em>Methanothrix</em>, <em>Methanobacterium</em>, and <em>Methanomassiliicoccus</em>, as well as the typical bacteria of <em>Chloroflexi</em>. The fundamental understanding of underlying mechanisms is critical for the practical application of co-pyrolysis biochar in AD field.</div></div>\",\"PeriodicalId\":100481,\"journal\":{\"name\":\"Environmental Functional Materials\",\"volume\":\"2 3\",\"pages\":\"Pages 201-212\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Functional Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773058124000012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Functional Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773058124000012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancement of biogas production from sludge anaerobic digestion via supplementing magnetic co-pyrolysis biochar: Dosage response and syntrophic metabolism
The addition of conductive materials to promote anaerobic digestion (AD) via direct interspecies electron transfer (DIET) has been attracted extensive attention, whereas seldom focused on the effect of co-pyrolysis biochar on sewage sludge AD. Here, a novel co-pyrolysis biochar derived from oil sludge and wheat straw was successfully applied in improving methane production. Experimental results suggested that the co-pyrolysis of wheat straw with oil sludge would increase the surface area of biochar, benefited for the methane production improvement. As high as 144.05 ​mL ​(g ​VS) −1 accumulative methane productivity and fast volatile fatty acids (VFAs) mainly acetic acids degradation rate was detected under the optimal operational condition with 1.6 ​g BC25 ​% (wheat straw: oil sludge ​= ​1:3) additive. Generally, the strong electron accepting capacity (71.8 μmol e g−1) and donating capacity (27.5 μmol e g−1) resulted from magnetic features and oxygen containing functional groups of co-pyrolysis biochar facilitated DIET process for boosting methane yield. Furthermore, co-pyrolysis biochar supplied sufficient trace elements (Ni, Cu and Zn) for activating the coenzyme F420, protease and electron transport system for accelerating methane yield. Microbial and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated acetoclastic and hydrogenotrophic pathways were both promoted due to the enrichment of archaea including Methanothrix, Methanobacterium, and Methanomassiliicoccus, as well as the typical bacteria of Chloroflexi. The fundamental understanding of underlying mechanisms is critical for the practical application of co-pyrolysis biochar in AD field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Advance of self-cleaning separation membranes for oil-containing wastewater treatment Modified Titanium dioxide-based photocatalysts for water treatment: Mini review Progress of CO2 fixation using cycloaddition reaction The application of diatomic catalysts in advanced oxidation Fenton-like water treatment technology:A mini review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1