{"title":"厄尔多斯-罗斯柴尔德问题的精确解","authors":"Oleg Pikhurko, Katherine Staden","doi":"10.1017/fms.2023.117","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\boldsymbol {k} := (k_1,\\ldots ,k_s)$</span></span></img></span></span> be a sequence of natural numbers. For a graph <span>G</span>, let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$F(G;\\boldsymbol {k})$</span></span></img></span></span> denote the number of colourings of the edges of <span>G</span> with colours <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$1,\\dots ,s$</span></span></img></span></span> such that, for every <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$c \\in \\{1,\\dots ,s\\}$</span></span></img></span></span>, the edges of colour <span>c</span> contain no clique of order <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$k_c$</span></span></img></span></span>. Write <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$F(n;\\boldsymbol {k})$</span></span></img></span></span> to denote the maximum of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$F(G;\\boldsymbol {k})$</span></span></img></span></span> over all graphs <span>G</span> on <span>n</span> vertices. There are currently very few known exact (or asymptotic) results for this problem, posed by Erdős and Rothschild in 1974. We prove some new exact results for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$n \\to \\infty $</span></span></img></span></span>: </p><ol><li><p><span>(i)</span> A sufficient condition on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\boldsymbol {k}$</span></span></img></span></span> which guarantees that every extremal graph is a complete multipartite graph, which systematically recovers all existing exact results.</p></li><li><p><span>(ii)</span> Addressing the original question of Erdős and Rothschild, in the case <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$\\boldsymbol {k}=(3,\\ldots ,3)$</span></span></img></span></span> of length <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$7$</span></span></img></span></span>, the unique extremal graph is the complete balanced <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline12.png\"><span data-mathjax-type=\"texmath\"><span>$8$</span></span></img></span></span>-partite graph, with colourings coming from Hadamard matrices of order <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline13.png\"><span data-mathjax-type=\"texmath\"><span>$8$</span></span></img></span></span>.</p></li><li><p><span>(iii)</span> In the case <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline14.png\"><span data-mathjax-type=\"texmath\"><span>$\\boldsymbol {k}=(k+1,k)$</span></span></img></span></span>, for which the sufficient condition in (i) does not hold, for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline15.png\"><span data-mathjax-type=\"texmath\"><span>$3 \\leq k \\leq 10$</span></span></img></span></span>, the unique extremal graph is complete <span>k</span>-partite with one part of size less than <span>k</span> and the other parts as equal in size as possible.</p></li></ol><p></p>","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exact solutions to the Erdős-Rothschild problem\",\"authors\":\"Oleg Pikhurko, Katherine Staden\",\"doi\":\"10.1017/fms.2023.117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\boldsymbol {k} := (k_1,\\\\ldots ,k_s)$</span></span></img></span></span> be a sequence of natural numbers. For a graph <span>G</span>, let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$F(G;\\\\boldsymbol {k})$</span></span></img></span></span> denote the number of colourings of the edges of <span>G</span> with colours <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$1,\\\\dots ,s$</span></span></img></span></span> such that, for every <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$c \\\\in \\\\{1,\\\\dots ,s\\\\}$</span></span></img></span></span>, the edges of colour <span>c</span> contain no clique of order <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$k_c$</span></span></img></span></span>. Write <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$F(n;\\\\boldsymbol {k})$</span></span></img></span></span> to denote the maximum of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$F(G;\\\\boldsymbol {k})$</span></span></img></span></span> over all graphs <span>G</span> on <span>n</span> vertices. There are currently very few known exact (or asymptotic) results for this problem, posed by Erdős and Rothschild in 1974. We prove some new exact results for <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$n \\\\to \\\\infty $</span></span></img></span></span>: </p><ol><li><p><span>(i)</span> A sufficient condition on <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\boldsymbol {k}$</span></span></img></span></span> which guarantees that every extremal graph is a complete multipartite graph, which systematically recovers all existing exact results.</p></li><li><p><span>(ii)</span> Addressing the original question of Erdős and Rothschild, in the case <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\boldsymbol {k}=(3,\\\\ldots ,3)$</span></span></img></span></span> of length <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$7$</span></span></img></span></span>, the unique extremal graph is the complete balanced <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline12.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$8$</span></span></img></span></span>-partite graph, with colourings coming from Hadamard matrices of order <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline13.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$8$</span></span></img></span></span>.</p></li><li><p><span>(iii)</span> In the case <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline14.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\boldsymbol {k}=(k+1,k)$</span></span></img></span></span>, for which the sufficient condition in (i) does not hold, for <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline15.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$3 \\\\leq k \\\\leq 10$</span></span></img></span></span>, the unique extremal graph is complete <span>k</span>-partite with one part of size less than <span>k</span> and the other parts as equal in size as possible.</p></li></ol><p></p>\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2023.117\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2023.117","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let $\boldsymbol {k} := (k_1,\ldots ,k_s)$ be a sequence of natural numbers. For a graph G, let $F(G;\boldsymbol {k})$ denote the number of colourings of the edges of G with colours $1,\dots ,s$ such that, for every $c \in \{1,\dots ,s\}$, the edges of colour c contain no clique of order $k_c$. Write $F(n;\boldsymbol {k})$ to denote the maximum of $F(G;\boldsymbol {k})$ over all graphs G on n vertices. There are currently very few known exact (or asymptotic) results for this problem, posed by Erdős and Rothschild in 1974. We prove some new exact results for $n \to \infty $:
(i) A sufficient condition on $\boldsymbol {k}$ which guarantees that every extremal graph is a complete multipartite graph, which systematically recovers all existing exact results.
(ii) Addressing the original question of Erdős and Rothschild, in the case $\boldsymbol {k}=(3,\ldots ,3)$ of length $7$, the unique extremal graph is the complete balanced $8$-partite graph, with colourings coming from Hadamard matrices of order $8$.
(iii) In the case $\boldsymbol {k}=(k+1,k)$, for which the sufficient condition in (i) does not hold, for $3 \leq k \leq 10$, the unique extremal graph is complete k-partite with one part of size less than k and the other parts as equal in size as possible.
期刊介绍:
Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.