{"title":"三维球形培养墨西哥黄羊肝脏衍生细胞系可再现体内组织环境的不同转录组学和代谢状态。","authors":"Tathagata Biswas, Naresh Rajendran, Huzaifa Hassan, Hua Li, Chongbei Zhao, Nicolas Rohner","doi":"10.1002/jez.b.23236","DOIUrl":null,"url":null,"abstract":"<p>In vitro assays are crucial tools for gaining detailed insights into various biological processes, including metabolism. Cave morphs of the river-dwelling fish species, <i>Astyanax mexicanus</i>, have adapted their metabolism allowing them to thrive in the biodiversity-deprived and nutrient-limited environment of caves. Liver-derived cells from the cave and river morphs of <i>A. mexicanus</i> have proven to be excellent in vitro resources to better understand the unique metabolism of these fish. However, the current 2D cultures have not fully captured the complex metabolic profile of the <i>Astyanax</i> liver. It is known that 3D culturing can modulate the transcriptomic state of cells when compared to its 2D monolayer culture. Therefore, to broaden the possibilities of the in vitro system by modeling a wider gamut of metabolic pathways, we cultured the liver-derived <i>Astyanax</i> cells of both surface and cavefish into 3D spheroids. We successfully established 3D cultures at various cell seeding densities for several weeks and characterized the resultant transcriptomic and metabolic variations. We found that the 3D cultured <i>Astyanax</i> cells exhibit an altered transcriptomic profile and consequently represent a wider range of metabolic pathways, including cell cycle changes and antioxidant activities, associated with liver functioning as compared to its monolayer culture. Enzymatic assay measuring antioxidants in 2D culture and 3D spheroids also revealed enhanced antioxidative capacity of 3D cultured spheroids, in line with the differential gene expression data. Additionally, the spheroids also exhibited surface and cave-specific metabolic signatures, making it a suitable system for evolutionary studies associated with cave adaptation. Notably, cavefish derived spheroids enriched for genes responding to xenobiotic stimulus, while the ones from surface enriched for immune response, both of which resonated with known physiologically adaptations associated with each morph. Taken together, the liver-derived spheroids prove to be a promising in vitro model for widening our understanding of metabolism in <i>A. mexicanus</i> and of vertebrates in general.</p>","PeriodicalId":15682,"journal":{"name":"Journal of experimental zoology. Part B, Molecular and developmental evolution","volume":"342 3","pages":"301-312"},"PeriodicalIF":1.8000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jez.b.23236","citationCount":"0","resultStr":"{\"title\":\"3D spheroid culturing of Astyanax mexicanus liver-derived cell lines recapitulates distinct transcriptomic and metabolic states of in vivo tissue environment\",\"authors\":\"Tathagata Biswas, Naresh Rajendran, Huzaifa Hassan, Hua Li, Chongbei Zhao, Nicolas Rohner\",\"doi\":\"10.1002/jez.b.23236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In vitro assays are crucial tools for gaining detailed insights into various biological processes, including metabolism. Cave morphs of the river-dwelling fish species, <i>Astyanax mexicanus</i>, have adapted their metabolism allowing them to thrive in the biodiversity-deprived and nutrient-limited environment of caves. Liver-derived cells from the cave and river morphs of <i>A. mexicanus</i> have proven to be excellent in vitro resources to better understand the unique metabolism of these fish. However, the current 2D cultures have not fully captured the complex metabolic profile of the <i>Astyanax</i> liver. It is known that 3D culturing can modulate the transcriptomic state of cells when compared to its 2D monolayer culture. Therefore, to broaden the possibilities of the in vitro system by modeling a wider gamut of metabolic pathways, we cultured the liver-derived <i>Astyanax</i> cells of both surface and cavefish into 3D spheroids. We successfully established 3D cultures at various cell seeding densities for several weeks and characterized the resultant transcriptomic and metabolic variations. We found that the 3D cultured <i>Astyanax</i> cells exhibit an altered transcriptomic profile and consequently represent a wider range of metabolic pathways, including cell cycle changes and antioxidant activities, associated with liver functioning as compared to its monolayer culture. Enzymatic assay measuring antioxidants in 2D culture and 3D spheroids also revealed enhanced antioxidative capacity of 3D cultured spheroids, in line with the differential gene expression data. Additionally, the spheroids also exhibited surface and cave-specific metabolic signatures, making it a suitable system for evolutionary studies associated with cave adaptation. Notably, cavefish derived spheroids enriched for genes responding to xenobiotic stimulus, while the ones from surface enriched for immune response, both of which resonated with known physiologically adaptations associated with each morph. Taken together, the liver-derived spheroids prove to be a promising in vitro model for widening our understanding of metabolism in <i>A. mexicanus</i> and of vertebrates in general.</p>\",\"PeriodicalId\":15682,\"journal\":{\"name\":\"Journal of experimental zoology. Part B, Molecular and developmental evolution\",\"volume\":\"342 3\",\"pages\":\"301-312\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jez.b.23236\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of experimental zoology. Part B, Molecular and developmental evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jez.b.23236\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of experimental zoology. Part B, Molecular and developmental evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jez.b.23236","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
3D spheroid culturing of Astyanax mexicanus liver-derived cell lines recapitulates distinct transcriptomic and metabolic states of in vivo tissue environment
In vitro assays are crucial tools for gaining detailed insights into various biological processes, including metabolism. Cave morphs of the river-dwelling fish species, Astyanax mexicanus, have adapted their metabolism allowing them to thrive in the biodiversity-deprived and nutrient-limited environment of caves. Liver-derived cells from the cave and river morphs of A. mexicanus have proven to be excellent in vitro resources to better understand the unique metabolism of these fish. However, the current 2D cultures have not fully captured the complex metabolic profile of the Astyanax liver. It is known that 3D culturing can modulate the transcriptomic state of cells when compared to its 2D monolayer culture. Therefore, to broaden the possibilities of the in vitro system by modeling a wider gamut of metabolic pathways, we cultured the liver-derived Astyanax cells of both surface and cavefish into 3D spheroids. We successfully established 3D cultures at various cell seeding densities for several weeks and characterized the resultant transcriptomic and metabolic variations. We found that the 3D cultured Astyanax cells exhibit an altered transcriptomic profile and consequently represent a wider range of metabolic pathways, including cell cycle changes and antioxidant activities, associated with liver functioning as compared to its monolayer culture. Enzymatic assay measuring antioxidants in 2D culture and 3D spheroids also revealed enhanced antioxidative capacity of 3D cultured spheroids, in line with the differential gene expression data. Additionally, the spheroids also exhibited surface and cave-specific metabolic signatures, making it a suitable system for evolutionary studies associated with cave adaptation. Notably, cavefish derived spheroids enriched for genes responding to xenobiotic stimulus, while the ones from surface enriched for immune response, both of which resonated with known physiologically adaptations associated with each morph. Taken together, the liver-derived spheroids prove to be a promising in vitro model for widening our understanding of metabolism in A. mexicanus and of vertebrates in general.
期刊介绍:
Developmental Evolution is a branch of evolutionary biology that integrates evidence and concepts from developmental biology, phylogenetics, comparative morphology, evolutionary genetics and increasingly also genomics, systems biology as well as synthetic biology to gain an understanding of the structure and evolution of organisms.
The Journal of Experimental Zoology -B: Molecular and Developmental Evolution provides a forum where these fields are invited to bring together their insights to further a synthetic understanding of evolution from the molecular through the organismic level. Contributions from all these branches of science are welcome to JEZB.
We particularly encourage submissions that apply the tools of genomics, as well as systems and synthetic biology to developmental evolution. At this time the impact of these emerging fields on developmental evolution has not been explored to its fullest extent and for this reason we are eager to foster the relationship of systems and synthetic biology with devo evo.