Sara Saponaro, Francesca Lizzi, Giacomo Serra, Francesca Mainas, Piernicola Oliva, Alessia Giuliano, Sara Calderoni, Alessandra Retico
{"title":"基于深度学习的联合融合方法,利用自闭症谱系障碍的大脑解剖和功能信息。","authors":"Sara Saponaro, Francesca Lizzi, Giacomo Serra, Francesca Mainas, Piernicola Oliva, Alessia Giuliano, Sara Calderoni, Alessandra Retico","doi":"10.1186/s40708-023-00217-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The integration of the information encoded in multiparametric MRI images can enhance the performance of machine-learning classifiers. In this study, we investigate whether the combination of structural and functional MRI might improve the performances of a deep learning (DL) model trained to discriminate subjects with Autism Spectrum Disorders (ASD) with respect to typically developing controls (TD).</p><p><strong>Material and methods: </strong>We analyzed both structural and functional MRI brain scans publicly available within the ABIDE I and II data collections. We considered 1383 male subjects with age between 5 and 40 years, including 680 subjects with ASD and 703 TD from 35 different acquisition sites. We extracted morphometric and functional brain features from MRI scans with the Freesurfer and the CPAC analysis packages, respectively. Then, due to the multisite nature of the dataset, we implemented a data harmonization protocol. The ASD vs. TD classification was carried out with a multiple-input DL model, consisting in a neural network which generates a fixed-length feature representation of the data of each modality (FR-NN), and a Dense Neural Network for classification (C-NN). Specifically, we implemented a joint fusion approach to multiple source data integration. The main advantage of the latter is that the loss is propagated back to the FR-NN during the training, thus creating informative feature representations for each data modality. Then, a C-NN, with a number of layers and neurons per layer to be optimized during the model training, performs the ASD-TD discrimination. The performance was evaluated by computing the Area under the Receiver Operating Characteristic curve within a nested 10-fold cross-validation. The brain features that drive the DL classification were identified by the SHAP explainability framework.</p><p><strong>Results: </strong>The AUC values of 0.66±0.05 and of 0.76±0.04 were obtained in the ASD vs. TD discrimination when only structural or functional features are considered, respectively. The joint fusion approach led to an AUC of 0.78±0.04. The set of structural and functional connectivity features identified as the most important for the two-class discrimination supports the idea that brain changes tend to occur in individuals with ASD in regions belonging to the Default Mode Network and to the Social Brain.</p><p><strong>Conclusions: </strong>Our results demonstrate that the multimodal joint fusion approach outperforms the classification results obtained with data acquired by a single MRI modality as it efficiently exploits the complementarity of structural and functional brain information.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"11 1","pages":"2"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10776521/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep learning based joint fusion approach to exploit anatomical and functional brain information in autism spectrum disorders.\",\"authors\":\"Sara Saponaro, Francesca Lizzi, Giacomo Serra, Francesca Mainas, Piernicola Oliva, Alessia Giuliano, Sara Calderoni, Alessandra Retico\",\"doi\":\"10.1186/s40708-023-00217-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The integration of the information encoded in multiparametric MRI images can enhance the performance of machine-learning classifiers. In this study, we investigate whether the combination of structural and functional MRI might improve the performances of a deep learning (DL) model trained to discriminate subjects with Autism Spectrum Disorders (ASD) with respect to typically developing controls (TD).</p><p><strong>Material and methods: </strong>We analyzed both structural and functional MRI brain scans publicly available within the ABIDE I and II data collections. We considered 1383 male subjects with age between 5 and 40 years, including 680 subjects with ASD and 703 TD from 35 different acquisition sites. We extracted morphometric and functional brain features from MRI scans with the Freesurfer and the CPAC analysis packages, respectively. Then, due to the multisite nature of the dataset, we implemented a data harmonization protocol. The ASD vs. TD classification was carried out with a multiple-input DL model, consisting in a neural network which generates a fixed-length feature representation of the data of each modality (FR-NN), and a Dense Neural Network for classification (C-NN). Specifically, we implemented a joint fusion approach to multiple source data integration. The main advantage of the latter is that the loss is propagated back to the FR-NN during the training, thus creating informative feature representations for each data modality. Then, a C-NN, with a number of layers and neurons per layer to be optimized during the model training, performs the ASD-TD discrimination. The performance was evaluated by computing the Area under the Receiver Operating Characteristic curve within a nested 10-fold cross-validation. The brain features that drive the DL classification were identified by the SHAP explainability framework.</p><p><strong>Results: </strong>The AUC values of 0.66±0.05 and of 0.76±0.04 were obtained in the ASD vs. TD discrimination when only structural or functional features are considered, respectively. The joint fusion approach led to an AUC of 0.78±0.04. The set of structural and functional connectivity features identified as the most important for the two-class discrimination supports the idea that brain changes tend to occur in individuals with ASD in regions belonging to the Default Mode Network and to the Social Brain.</p><p><strong>Conclusions: </strong>Our results demonstrate that the multimodal joint fusion approach outperforms the classification results obtained with data acquired by a single MRI modality as it efficiently exploits the complementarity of structural and functional brain information.</p>\",\"PeriodicalId\":37465,\"journal\":{\"name\":\"Brain Informatics\",\"volume\":\"11 1\",\"pages\":\"2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10776521/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40708-023-00217-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-023-00217-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Deep learning based joint fusion approach to exploit anatomical and functional brain information in autism spectrum disorders.
Background: The integration of the information encoded in multiparametric MRI images can enhance the performance of machine-learning classifiers. In this study, we investigate whether the combination of structural and functional MRI might improve the performances of a deep learning (DL) model trained to discriminate subjects with Autism Spectrum Disorders (ASD) with respect to typically developing controls (TD).
Material and methods: We analyzed both structural and functional MRI brain scans publicly available within the ABIDE I and II data collections. We considered 1383 male subjects with age between 5 and 40 years, including 680 subjects with ASD and 703 TD from 35 different acquisition sites. We extracted morphometric and functional brain features from MRI scans with the Freesurfer and the CPAC analysis packages, respectively. Then, due to the multisite nature of the dataset, we implemented a data harmonization protocol. The ASD vs. TD classification was carried out with a multiple-input DL model, consisting in a neural network which generates a fixed-length feature representation of the data of each modality (FR-NN), and a Dense Neural Network for classification (C-NN). Specifically, we implemented a joint fusion approach to multiple source data integration. The main advantage of the latter is that the loss is propagated back to the FR-NN during the training, thus creating informative feature representations for each data modality. Then, a C-NN, with a number of layers and neurons per layer to be optimized during the model training, performs the ASD-TD discrimination. The performance was evaluated by computing the Area under the Receiver Operating Characteristic curve within a nested 10-fold cross-validation. The brain features that drive the DL classification were identified by the SHAP explainability framework.
Results: The AUC values of 0.66±0.05 and of 0.76±0.04 were obtained in the ASD vs. TD discrimination when only structural or functional features are considered, respectively. The joint fusion approach led to an AUC of 0.78±0.04. The set of structural and functional connectivity features identified as the most important for the two-class discrimination supports the idea that brain changes tend to occur in individuals with ASD in regions belonging to the Default Mode Network and to the Social Brain.
Conclusions: Our results demonstrate that the multimodal joint fusion approach outperforms the classification results obtained with data acquired by a single MRI modality as it efficiently exploits the complementarity of structural and functional brain information.
期刊介绍:
Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing