关于协作式多无人机数据采集的轨迹规划

IF 2.9 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Communications and Networks Pub Date : 2023-12-01 DOI:10.23919/JCN.2023.000031
Shahnila Rahim;Limei Peng;Shihyu Chang;Pin-Han Ho
{"title":"关于协作式多无人机数据采集的轨迹规划","authors":"Shahnila Rahim;Limei Peng;Shihyu Chang;Pin-Han Ho","doi":"10.23919/JCN.2023.000031","DOIUrl":null,"url":null,"abstract":"This paper investigates the scenario of the Internet of things (IoT) data collection via multiple unmanned aerial vehicles (UAVs), where a novel collaborative multi-agent trajectory planning and data collection (CMA-TD) algorithm is introduced for online obtaining the trajectories of the multiple UAVs without any prior knowledge of the sensor locations. We first provide two integer linear programs (ILPs) for the considered system by taking the coverage and the total power usage as the optimization targets. As a complement to the ILPs and to avoid intractable computation, the proposed CMA-TD algorithm can effectively solve the formulated problem via a deep reinforcement learning (DRL) process on a double deep Q-learning network (DDQN). Extensive simulations are conducted to verify the performance of the proposed CMA-TD algorithm and compare it with a couple of state-of-the-art counterparts in terms of the amount of served IoT nodes, energy consumption, and utilization rates.","PeriodicalId":54864,"journal":{"name":"Journal of Communications and Networks","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10387274","citationCount":"0","resultStr":"{\"title\":\"On collaborative multi-UAV trajectory planning for data collection\",\"authors\":\"Shahnila Rahim;Limei Peng;Shihyu Chang;Pin-Han Ho\",\"doi\":\"10.23919/JCN.2023.000031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the scenario of the Internet of things (IoT) data collection via multiple unmanned aerial vehicles (UAVs), where a novel collaborative multi-agent trajectory planning and data collection (CMA-TD) algorithm is introduced for online obtaining the trajectories of the multiple UAVs without any prior knowledge of the sensor locations. We first provide two integer linear programs (ILPs) for the considered system by taking the coverage and the total power usage as the optimization targets. As a complement to the ILPs and to avoid intractable computation, the proposed CMA-TD algorithm can effectively solve the formulated problem via a deep reinforcement learning (DRL) process on a double deep Q-learning network (DDQN). Extensive simulations are conducted to verify the performance of the proposed CMA-TD algorithm and compare it with a couple of state-of-the-art counterparts in terms of the amount of served IoT nodes, energy consumption, and utilization rates.\",\"PeriodicalId\":54864,\"journal\":{\"name\":\"Journal of Communications and Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10387274\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10387274/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10387274/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了通过多个无人飞行器(UAV)进行物联网(IoT)数据收集的场景,其中引入了一种新颖的协作式多代理轨迹规划和数据收集(CMA-TD)算法,用于在线获取多个 UAV 的轨迹,而无需事先了解传感器的位置。我们首先以覆盖范围和总功率使用为优化目标,为所考虑的系统提供了两个整数线性方程(ILP)。作为 ILPs 的补充,为了避免难以处理的计算,我们提出的 CMA-TD 算法可以通过双深度 Q-learning 网络(DDQN)上的深度强化学习(DRL)过程有效地解决所提出的问题。通过大量仿真验证了所提出的 CMA-TD 算法的性能,并在服务的物联网节点数量、能耗和利用率方面与几种最先进的算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On collaborative multi-UAV trajectory planning for data collection
This paper investigates the scenario of the Internet of things (IoT) data collection via multiple unmanned aerial vehicles (UAVs), where a novel collaborative multi-agent trajectory planning and data collection (CMA-TD) algorithm is introduced for online obtaining the trajectories of the multiple UAVs without any prior knowledge of the sensor locations. We first provide two integer linear programs (ILPs) for the considered system by taking the coverage and the total power usage as the optimization targets. As a complement to the ILPs and to avoid intractable computation, the proposed CMA-TD algorithm can effectively solve the formulated problem via a deep reinforcement learning (DRL) process on a double deep Q-learning network (DDQN). Extensive simulations are conducted to verify the performance of the proposed CMA-TD algorithm and compare it with a couple of state-of-the-art counterparts in terms of the amount of served IoT nodes, energy consumption, and utilization rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
5.60%
发文量
66
审稿时长
14.4 months
期刊介绍: The JOURNAL OF COMMUNICATIONS AND NETWORKS is published six times per year, and is committed to publishing high-quality papers that advance the state-of-the-art and practical applications of communications and information networks. Theoretical research contributions presenting new techniques, concepts, or analyses, applied contributions reporting on experiences and experiments, and tutorial expositions of permanent reference value are welcome. The subjects covered by this journal include all topics in communication theory and techniques, communication systems, and information networks. COMMUNICATION THEORY AND SYSTEMS WIRELESS COMMUNICATIONS NETWORKS AND SERVICES.
期刊最新文献
Advertisement Editorial board Front cover Back cover copyright transferform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1