{"title":"观察事件的(非)模糊性 \"意味着什么?","authors":"Emily Adlam","doi":"10.1007/s10701-023-00747-1","DOIUrl":null,"url":null,"abstract":"<div><p>Recently there have emerged an assortment of theorems relating to the ‘absoluteness of emerged events,’ and these results have sometimes been used to argue that quantum mechanics may involve some kind of metaphysically radical non-absoluteness, such as relationalism or perspectivalism. However, in our view a close examination of these theorems fails to convincingly support such possibilities. In this paper we argue that the Wigner’s friend paradox, the theorem of Bong et al and the theorem of Lawrence et al are all best understood as demonstrating that if quantum mechanics is universal, and if certain auxiliary assumptions hold, then the world inevitably includes various forms of ‘disaccord,’ but this need not be interpreted in a metaphysically radical way; meanwhile, the theorem of Ormrod and Barrett is best understood either as an argument for an interpretation allowing multiple outcomes per observer, such as the Everett approach, or as a proof that quantum mechanics cannot be universal in the sense relevant for this theorem. We also argue that these theorems taken together suggest interesting possibilities for a different kind of relational approach in which <i>interaction</i> states are relativized whilst observed events are absolute, and we show that although something like ‘retrocausality’ might be needed to make such an approach work, this would be a very special kind of retrocausality which would evade a number of common objections against retrocausality. We conclude that the non-absoluteness theorems may have a significant role to play in helping converge towards an acceptable solution to the measurement problem.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"54 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10701-023-00747-1.pdf","citationCount":"0","resultStr":"{\"title\":\"What Does ‘(Non)-absoluteness of Observed Events’ Mean?\",\"authors\":\"Emily Adlam\",\"doi\":\"10.1007/s10701-023-00747-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently there have emerged an assortment of theorems relating to the ‘absoluteness of emerged events,’ and these results have sometimes been used to argue that quantum mechanics may involve some kind of metaphysically radical non-absoluteness, such as relationalism or perspectivalism. However, in our view a close examination of these theorems fails to convincingly support such possibilities. In this paper we argue that the Wigner’s friend paradox, the theorem of Bong et al and the theorem of Lawrence et al are all best understood as demonstrating that if quantum mechanics is universal, and if certain auxiliary assumptions hold, then the world inevitably includes various forms of ‘disaccord,’ but this need not be interpreted in a metaphysically radical way; meanwhile, the theorem of Ormrod and Barrett is best understood either as an argument for an interpretation allowing multiple outcomes per observer, such as the Everett approach, or as a proof that quantum mechanics cannot be universal in the sense relevant for this theorem. We also argue that these theorems taken together suggest interesting possibilities for a different kind of relational approach in which <i>interaction</i> states are relativized whilst observed events are absolute, and we show that although something like ‘retrocausality’ might be needed to make such an approach work, this would be a very special kind of retrocausality which would evade a number of common objections against retrocausality. We conclude that the non-absoluteness theorems may have a significant role to play in helping converge towards an acceptable solution to the measurement problem.</p></div>\",\"PeriodicalId\":569,\"journal\":{\"name\":\"Foundations of Physics\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10701-023-00747-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10701-023-00747-1\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-023-00747-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
What Does ‘(Non)-absoluteness of Observed Events’ Mean?
Recently there have emerged an assortment of theorems relating to the ‘absoluteness of emerged events,’ and these results have sometimes been used to argue that quantum mechanics may involve some kind of metaphysically radical non-absoluteness, such as relationalism or perspectivalism. However, in our view a close examination of these theorems fails to convincingly support such possibilities. In this paper we argue that the Wigner’s friend paradox, the theorem of Bong et al and the theorem of Lawrence et al are all best understood as demonstrating that if quantum mechanics is universal, and if certain auxiliary assumptions hold, then the world inevitably includes various forms of ‘disaccord,’ but this need not be interpreted in a metaphysically radical way; meanwhile, the theorem of Ormrod and Barrett is best understood either as an argument for an interpretation allowing multiple outcomes per observer, such as the Everett approach, or as a proof that quantum mechanics cannot be universal in the sense relevant for this theorem. We also argue that these theorems taken together suggest interesting possibilities for a different kind of relational approach in which interaction states are relativized whilst observed events are absolute, and we show that although something like ‘retrocausality’ might be needed to make such an approach work, this would be a very special kind of retrocausality which would evade a number of common objections against retrocausality. We conclude that the non-absoluteness theorems may have a significant role to play in helping converge towards an acceptable solution to the measurement problem.
期刊介绍:
The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others.
Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments.
Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises.
The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.