通过前向模拟开放太阳通量重建太阳黑子数量

IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Solar Physics Pub Date : 2024-01-09 DOI:10.1007/s11207-023-02241-3
Mathew J. Owens, Mike Lockwood, Luke A. Barnard, Ilya Usoskin, Hisashi Hayakawa, Benjamin J. S. Pope, Ken McCracken
{"title":"通过前向模拟开放太阳通量重建太阳黑子数量","authors":"Mathew J. Owens,&nbsp;Mike Lockwood,&nbsp;Luke A. Barnard,&nbsp;Ilya Usoskin,&nbsp;Hisashi Hayakawa,&nbsp;Benjamin J. S. Pope,&nbsp;Ken McCracken","doi":"10.1007/s11207-023-02241-3","DOIUrl":null,"url":null,"abstract":"<div><p>The open solar flux (OSF) is the integrated unsigned magnetic flux leaving the top of the solar atmosphere to form the heliospheric magnetic field. As the OSF modulates the intensity of galactic cosmic rays at Earth, the production rate of cosmogenic isotopes – such as <sup>14</sup>C and <sup>10</sup>Be stored in tree rings and ice sheets – is closely related to the OSF. Thus on the basis of cosmogenic isotope data, OSF can be reconstructed over millennia. As sunspots are related to the production of OSF, this provides the possibility of reconstructing sunspot number (SSN) and hence properties of the solar cycles prior to the first sunspot telescopic observations in 1610. However, while models exist for estimating OSF on the basis of SSN, the hysteresis present in OSF and the lack of <i>a priori</i> knowledge of the start/end dates of individual solar cycles means that directly inverting these models is not possible. We here describe a new method that uses a forward model of OSF to estimate SSN and solar cycle start/end dates through a Monte Carlo approach. The method is tested by application to geomagnetic reconstructions of OSF over the period 1845-present, and compared to the known SSN record for this period. There is a substantial improvement in reconstruction of both the SSN time series and the solar cycle start/end dates compared with existing OSF-SSN regression methods. This suggests that more accurate solar-cycle information can be extracted from cosmogenic isotope records by forward modelling, and also provides a means to assess the level of agreement between independent SSN and OSF reconstructions. We find the geomagnetic OSF and observed SSN agree very well after 1875, but do differ during the early part of the geomagnetic record, though still agree within the larger observational uncertainties.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11207-023-02241-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Reconstructing Sunspot Number by Forward-Modelling Open Solar Flux\",\"authors\":\"Mathew J. Owens,&nbsp;Mike Lockwood,&nbsp;Luke A. Barnard,&nbsp;Ilya Usoskin,&nbsp;Hisashi Hayakawa,&nbsp;Benjamin J. S. Pope,&nbsp;Ken McCracken\",\"doi\":\"10.1007/s11207-023-02241-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The open solar flux (OSF) is the integrated unsigned magnetic flux leaving the top of the solar atmosphere to form the heliospheric magnetic field. As the OSF modulates the intensity of galactic cosmic rays at Earth, the production rate of cosmogenic isotopes – such as <sup>14</sup>C and <sup>10</sup>Be stored in tree rings and ice sheets – is closely related to the OSF. Thus on the basis of cosmogenic isotope data, OSF can be reconstructed over millennia. As sunspots are related to the production of OSF, this provides the possibility of reconstructing sunspot number (SSN) and hence properties of the solar cycles prior to the first sunspot telescopic observations in 1610. However, while models exist for estimating OSF on the basis of SSN, the hysteresis present in OSF and the lack of <i>a priori</i> knowledge of the start/end dates of individual solar cycles means that directly inverting these models is not possible. We here describe a new method that uses a forward model of OSF to estimate SSN and solar cycle start/end dates through a Monte Carlo approach. The method is tested by application to geomagnetic reconstructions of OSF over the period 1845-present, and compared to the known SSN record for this period. There is a substantial improvement in reconstruction of both the SSN time series and the solar cycle start/end dates compared with existing OSF-SSN regression methods. This suggests that more accurate solar-cycle information can be extracted from cosmogenic isotope records by forward modelling, and also provides a means to assess the level of agreement between independent SSN and OSF reconstructions. We find the geomagnetic OSF and observed SSN agree very well after 1875, but do differ during the early part of the geomagnetic record, though still agree within the larger observational uncertainties.</p></div>\",\"PeriodicalId\":777,\"journal\":{\"name\":\"Solar Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11207-023-02241-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11207-023-02241-3\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-023-02241-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

开放的太阳磁通量(OSF)是离开太阳大气顶部形成日光层磁场的综合无符号磁通量。由于OSF调节着地球上银河宇宙射线的强度,宇宙成因同位素(如储存在树木年轮和冰层中的14C和10Be)的产生率与OSF密切相关。因此,根据宇宙生成同位素数据,可以重建几千年来的OSF。由于太阳黑子与OSF的产生有关,这就为重建太阳黑子数(SSN)提供了可能,从而重建1610年首次太阳黑子望远镜观测之前太阳周期的特性。然而,虽然存在根据太阳黑子数估算OSF的模型,但OSF中存在的滞后性以及缺乏对单个太阳周期开始/结束日期的先验知识,意味着直接反演这些模型是不可能的。我们在这里介绍一种新方法,它利用OSF的前向模型,通过蒙特卡罗方法来估计SSN和太阳周期的开始/结束日期。我们将这种方法应用于 1845 年至今的地磁重建,并与这一时期已知的 SSN 记录进行比较。与现有的OSF-SSN回归方法相比,SSN时间序列和太阳周期开始/结束日期的重建都有很大改进。这表明可以通过前向建模从宇宙生成同位素记录中提取更准确的太阳周期信息,同时也为评估独立的 SSN 和 OSF 重建之间的一致程度提供了一种方法。我们发现地磁 OSF 和观测到的 SSN 在 1875 年之后非常吻合,但在地磁记录的早期部分确实存在差异,不过仍然在较大的观测不确定性范围内吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reconstructing Sunspot Number by Forward-Modelling Open Solar Flux

The open solar flux (OSF) is the integrated unsigned magnetic flux leaving the top of the solar atmosphere to form the heliospheric magnetic field. As the OSF modulates the intensity of galactic cosmic rays at Earth, the production rate of cosmogenic isotopes – such as 14C and 10Be stored in tree rings and ice sheets – is closely related to the OSF. Thus on the basis of cosmogenic isotope data, OSF can be reconstructed over millennia. As sunspots are related to the production of OSF, this provides the possibility of reconstructing sunspot number (SSN) and hence properties of the solar cycles prior to the first sunspot telescopic observations in 1610. However, while models exist for estimating OSF on the basis of SSN, the hysteresis present in OSF and the lack of a priori knowledge of the start/end dates of individual solar cycles means that directly inverting these models is not possible. We here describe a new method that uses a forward model of OSF to estimate SSN and solar cycle start/end dates through a Monte Carlo approach. The method is tested by application to geomagnetic reconstructions of OSF over the period 1845-present, and compared to the known SSN record for this period. There is a substantial improvement in reconstruction of both the SSN time series and the solar cycle start/end dates compared with existing OSF-SSN regression methods. This suggests that more accurate solar-cycle information can be extracted from cosmogenic isotope records by forward modelling, and also provides a means to assess the level of agreement between independent SSN and OSF reconstructions. We find the geomagnetic OSF and observed SSN agree very well after 1875, but do differ during the early part of the geomagnetic record, though still agree within the larger observational uncertainties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Physics
Solar Physics 地学天文-天文与天体物理
CiteScore
5.10
自引率
17.90%
发文量
146
审稿时长
1 months
期刊介绍: Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.
期刊最新文献
Magnetic Imbalance at Supergranular Scale: A Driving Mechanism for Coronal Hole Formation The Magnetic Power Spectra of Decaying Active Regions: New Evidence for the Large-Scale Magnetic Flux Bundle Submergence? Measurement of Solar Differential Rotation by Absolutely Calibrated Iodine-Cell Spectroscopy High-Resolution Observation of Blowout Jets Regulated by Sunspot Rotation New Anisotropic Cosmic-Ray Enhancement (ACRE) Event on 5 November 2023 Due to Complex Heliospheric Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1