Robert Kousnetsov, Jessica Bourque, Alexey Surnov, Ian Fallahee, Daniel Hawiger
{"title":"在生物相关维度内进行单细胞测序分析","authors":"Robert Kousnetsov, Jessica Bourque, Alexey Surnov, Ian Fallahee, Daniel Hawiger","doi":"10.1016/j.cels.2023.12.005","DOIUrl":null,"url":null,"abstract":"<p>The currently predominant approach to transcriptomic and epigenomic single-cell analysis depends on a rigid perspective constrained by reduced dimensions and algorithmically derived and annotated clusters. Here, we developed Seqtometry (sequencing-to-measurement), a single-cell analytical strategy based on biologically relevant dimensions enabled by advanced scoring with multiple gene sets (signatures) for examination of gene expression and accessibility across various organ systems. By utilizing information only in the form of specific signatures, Seqtometry bypasses unsupervised clustering and individual annotations of clusters. Instead, Seqtometry combines qualitative and quantitative cell-type identification with specific characterization of diverse biological processes under experimental or disease conditions. Comprehensive analysis by Seqtometry of various immune cells as well as other cells from different organs and disease-induced states, including multiple myeloma and Alzheimer’s disease, surpasses corresponding cluster-based analytical output. We propose Seqtometry as a single-cell sequencing analysis approach applicable for both basic and clinical research.</p>","PeriodicalId":54348,"journal":{"name":"Cell Systems","volume":"94 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-cell sequencing analysis within biologically relevant dimensions\",\"authors\":\"Robert Kousnetsov, Jessica Bourque, Alexey Surnov, Ian Fallahee, Daniel Hawiger\",\"doi\":\"10.1016/j.cels.2023.12.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The currently predominant approach to transcriptomic and epigenomic single-cell analysis depends on a rigid perspective constrained by reduced dimensions and algorithmically derived and annotated clusters. Here, we developed Seqtometry (sequencing-to-measurement), a single-cell analytical strategy based on biologically relevant dimensions enabled by advanced scoring with multiple gene sets (signatures) for examination of gene expression and accessibility across various organ systems. By utilizing information only in the form of specific signatures, Seqtometry bypasses unsupervised clustering and individual annotations of clusters. Instead, Seqtometry combines qualitative and quantitative cell-type identification with specific characterization of diverse biological processes under experimental or disease conditions. Comprehensive analysis by Seqtometry of various immune cells as well as other cells from different organs and disease-induced states, including multiple myeloma and Alzheimer’s disease, surpasses corresponding cluster-based analytical output. We propose Seqtometry as a single-cell sequencing analysis approach applicable for both basic and clinical research.</p>\",\"PeriodicalId\":54348,\"journal\":{\"name\":\"Cell Systems\",\"volume\":\"94 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Systems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2023.12.005\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cels.2023.12.005","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Single-cell sequencing analysis within biologically relevant dimensions
The currently predominant approach to transcriptomic and epigenomic single-cell analysis depends on a rigid perspective constrained by reduced dimensions and algorithmically derived and annotated clusters. Here, we developed Seqtometry (sequencing-to-measurement), a single-cell analytical strategy based on biologically relevant dimensions enabled by advanced scoring with multiple gene sets (signatures) for examination of gene expression and accessibility across various organ systems. By utilizing information only in the form of specific signatures, Seqtometry bypasses unsupervised clustering and individual annotations of clusters. Instead, Seqtometry combines qualitative and quantitative cell-type identification with specific characterization of diverse biological processes under experimental or disease conditions. Comprehensive analysis by Seqtometry of various immune cells as well as other cells from different organs and disease-induced states, including multiple myeloma and Alzheimer’s disease, surpasses corresponding cluster-based analytical output. We propose Seqtometry as a single-cell sequencing analysis approach applicable for both basic and clinical research.
Cell SystemsMedicine-Pathology and Forensic Medicine
CiteScore
16.50
自引率
1.10%
发文量
84
审稿时长
42 days
期刊介绍:
In 2015, Cell Systems was founded as a platform within Cell Press to showcase innovative research in systems biology. Our primary goal is to investigate complex biological phenomena that cannot be simply explained by basic mathematical principles. While the physical sciences have long successfully tackled such challenges, we have discovered that our most impactful publications often employ quantitative, inference-based methodologies borrowed from the fields of physics, engineering, mathematics, and computer science. We are committed to providing a home for elegant research that addresses fundamental questions in systems biology.