Ziyan Yang, Rongzhen Chen, Ling Zhang, Yuhang Li and Chunzhong Li
{"title":"将 CO2 电还原为 CO 的镍单原子催化剂的最新进展","authors":"Ziyan Yang, Rongzhen Chen, Ling Zhang, Yuhang Li and Chunzhong Li","doi":"10.1039/D3IM00109A","DOIUrl":null,"url":null,"abstract":"<p>The electrocatalytic reduction of carbon dioxide (CO<small><sub>2</sub></small>) is considered an effective strategy for mitigating the energy crisis and the greenhouse effect. Nickel is widely used in single-atom catalysts (SACs) owing to its special electronic structure. In this minireview, the basic principles of Ni SACs in the electrocatalytic reduction of CO<small><sub>2</sub></small> to CO are first described. Subsequently, Ni SACs are divided into three categories depending on different strategies used to improve properties. The synthesis, morphology, performance and theoretical calculations of the catalysts are also described. Finally, an overview of the existing challenges and perspectives of Ni SACs for CO<small><sub>2</sub></small> reduction is presented.</p><p>Keywords: CO<small><sub>2</sub></small> reduction; Electrocatalysis; Nickel single-atom catalysts.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 4","pages":" 533-555"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/im/d3im00109a?page=search","citationCount":"0","resultStr":"{\"title\":\"Recent progress in nickel single-atom catalysts for the electroreduction of CO2 to CO\",\"authors\":\"Ziyan Yang, Rongzhen Chen, Ling Zhang, Yuhang Li and Chunzhong Li\",\"doi\":\"10.1039/D3IM00109A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The electrocatalytic reduction of carbon dioxide (CO<small><sub>2</sub></small>) is considered an effective strategy for mitigating the energy crisis and the greenhouse effect. Nickel is widely used in single-atom catalysts (SACs) owing to its special electronic structure. In this minireview, the basic principles of Ni SACs in the electrocatalytic reduction of CO<small><sub>2</sub></small> to CO are first described. Subsequently, Ni SACs are divided into three categories depending on different strategies used to improve properties. The synthesis, morphology, performance and theoretical calculations of the catalysts are also described. Finally, an overview of the existing challenges and perspectives of Ni SACs for CO<small><sub>2</sub></small> reduction is presented.</p><p>Keywords: CO<small><sub>2</sub></small> reduction; Electrocatalysis; Nickel single-atom catalysts.</p>\",\"PeriodicalId\":29808,\"journal\":{\"name\":\"Industrial Chemistry & Materials\",\"volume\":\" 4\",\"pages\":\" 533-555\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/im/d3im00109a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Chemistry & Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/im/d3im00109a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Chemistry & Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/im/d3im00109a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
电催化还原二氧化碳(CO2)被认为是缓解能源危机和温室效应的有效策略。镍因其特殊的电子结构而被广泛应用于单原子催化剂(SAC)中。在本小视图中,首先介绍了镍单原子催化剂在电催化将 CO2 还原成 CO 的过程中的基本原理。随后,根据改善性能的不同策略,Ni SACs 被分为三类。此外,还介绍了催化剂的合成、形态、性能和理论计算。最后,概述了用于二氧化碳还原的 Ni SACs 目前面临的挑战和前景。
Recent progress in nickel single-atom catalysts for the electroreduction of CO2 to CO
The electrocatalytic reduction of carbon dioxide (CO2) is considered an effective strategy for mitigating the energy crisis and the greenhouse effect. Nickel is widely used in single-atom catalysts (SACs) owing to its special electronic structure. In this minireview, the basic principles of Ni SACs in the electrocatalytic reduction of CO2 to CO are first described. Subsequently, Ni SACs are divided into three categories depending on different strategies used to improve properties. The synthesis, morphology, performance and theoretical calculations of the catalysts are also described. Finally, an overview of the existing challenges and perspectives of Ni SACs for CO2 reduction is presented.
Keywords: CO2 reduction; Electrocatalysis; Nickel single-atom catalysts.
期刊介绍:
Industrial Chemistry & Materials (ICM) publishes significant innovative research and major technological breakthroughs in all aspects of industrial chemistry and materials, with a particular focus on the important innovation of low-carbon chemical industry, energy and functional materials. By bringing researchers, engineers, and policymakers into one place, research is inspired, challenges are solved and the applications of science and technology are accelerated.
The global editorial and advisory board members are valued experts in the community. With their support, the rigorous editorial practices and dissemination ensures your research is accessible and discoverable on a global scale.
Industrial Chemistry & Materials publishes:
● Communications
● Full papers
● Minireviews
● Reviews
● Perspectives
● Comments