Seyed Ali Hosseini , Pierre Boivin , Dominique Thévenin , Ilya Karlin
{"title":"用于燃烧应用的晶格玻尔兹曼方法","authors":"Seyed Ali Hosseini , Pierre Boivin , Dominique Thévenin , Ilya Karlin","doi":"10.1016/j.pecs.2023.101140","DOIUrl":null,"url":null,"abstract":"<div><p>Progress in recent years has opened the door for yet another area of application for the lattice Boltzmann method: Combustion simulations. Combustion is known to be a challenge for numerical tools due to, among many other reasons, a large number of variables and scales both in time and space. The present work aims to provide readers with an overview of recent progress and achievements in using the lattice Boltzmann method for combustion simulations. The article reviews some basic concepts from the lattice Boltzmann method and discusses different strategies to extend the method to compressible flows. Some of the lattice Boltzmann models developed to model mass transport in multi-species system are also discussed. The article provides a comprehensive overview of models and strategies developed in the past years to simulate combustion with the lattice Boltzmann method and discuss some of the most recent applications, remaining challenges and prospects.</p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"102 ","pages":"Article 101140"},"PeriodicalIF":32.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0360128523000709/pdfft?md5=c3a3ad17580a23c91753a13c5c6eb62f&pid=1-s2.0-S0360128523000709-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Lattice Boltzmann methods for combustion applications\",\"authors\":\"Seyed Ali Hosseini , Pierre Boivin , Dominique Thévenin , Ilya Karlin\",\"doi\":\"10.1016/j.pecs.2023.101140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Progress in recent years has opened the door for yet another area of application for the lattice Boltzmann method: Combustion simulations. Combustion is known to be a challenge for numerical tools due to, among many other reasons, a large number of variables and scales both in time and space. The present work aims to provide readers with an overview of recent progress and achievements in using the lattice Boltzmann method for combustion simulations. The article reviews some basic concepts from the lattice Boltzmann method and discusses different strategies to extend the method to compressible flows. Some of the lattice Boltzmann models developed to model mass transport in multi-species system are also discussed. The article provides a comprehensive overview of models and strategies developed in the past years to simulate combustion with the lattice Boltzmann method and discuss some of the most recent applications, remaining challenges and prospects.</p></div>\",\"PeriodicalId\":410,\"journal\":{\"name\":\"Progress in Energy and Combustion Science\",\"volume\":\"102 \",\"pages\":\"Article 101140\"},\"PeriodicalIF\":32.0000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0360128523000709/pdfft?md5=c3a3ad17580a23c91753a13c5c6eb62f&pid=1-s2.0-S0360128523000709-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Energy and Combustion Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360128523000709\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Energy and Combustion Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360128523000709","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Lattice Boltzmann methods for combustion applications
Progress in recent years has opened the door for yet another area of application for the lattice Boltzmann method: Combustion simulations. Combustion is known to be a challenge for numerical tools due to, among many other reasons, a large number of variables and scales both in time and space. The present work aims to provide readers with an overview of recent progress and achievements in using the lattice Boltzmann method for combustion simulations. The article reviews some basic concepts from the lattice Boltzmann method and discusses different strategies to extend the method to compressible flows. Some of the lattice Boltzmann models developed to model mass transport in multi-species system are also discussed. The article provides a comprehensive overview of models and strategies developed in the past years to simulate combustion with the lattice Boltzmann method and discuss some of the most recent applications, remaining challenges and prospects.
期刊介绍:
Progress in Energy and Combustion Science (PECS) publishes review articles covering all aspects of energy and combustion science. These articles offer a comprehensive, in-depth overview, evaluation, and discussion of specific topics. Given the importance of climate change and energy conservation, efficient combustion of fossil fuels and the development of sustainable energy systems are emphasized. Environmental protection requires limiting pollutants, including greenhouse gases, emitted from combustion and other energy-intensive systems. Additionally, combustion plays a vital role in process technology and materials science.
PECS features articles authored by internationally recognized experts in combustion, flames, fuel science and technology, and sustainable energy solutions. Each volume includes specially commissioned review articles providing orderly and concise surveys and scientific discussions on various aspects of combustion and energy. While not overly lengthy, these articles allow authors to thoroughly and comprehensively explore their subjects. They serve as valuable resources for researchers seeking knowledge beyond their own fields and for students and engineers in government and industrial research seeking comprehensive reviews and practical solutions.