利用无线电掩星弯曲角的一维变分电离层检索: 1. 理论

IF 3.7 2区 地球科学 Space Weather Pub Date : 2024-01-09 DOI:10.1029/2023sw003572
I. D. Culverwell, S. B. Healy, S. Elvidge
{"title":"利用无线电掩星弯曲角的一维变分电离层检索: 1. 理论","authors":"I. D. Culverwell, S. B. Healy, S. Elvidge","doi":"10.1029/2023sw003572","DOIUrl":null,"url":null,"abstract":"A new one-dimensional variational (1D-Var) retrieval method for ionospheric GNSS radio occultation (GNSS-RO) measurements is described. The forward model implicit in the retrieval calculates the bending angles produced by a one-dimensional ionospheric electron density profile, modeled with multiple “Vary-Chap” layers. It is demonstrated that gradient based minimization techniques can be applied to this retrieval problem. The use of ionospheric bending angles is discussed. This approach circumvents the need for Differential Code Bias (DCB) estimates when using the measurements. This new, general retrieval method is applicable to both standard GNSS-RO retrieval problems, and the truncated geometry of EUMETSAT's Metop Second Generation (Metop-SG), which will provide GNSS-RO measurements up to about 600 km above the surface. The climatological a priori information used in the 1D-Var is effectively a starting point for the 1D-Var minimization, rather than a strong constraint on the final solution. In this paper the approach has been tested with 143 COSMIC-1 measurements. We find that the method converges in 135 of the cases, but around 25 of those have high “cost at convergence” values. In the companion paper (Elvidge et al., 2023), a full statistical analysis of the method, using over 10,000 COSMIC-2 measurements, has been made.","PeriodicalId":22181,"journal":{"name":"Space Weather","volume":"22 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-Dimensional Variational Ionospheric Retrieval Using Radio Occultation Bending Angles: 1. Theory\",\"authors\":\"I. D. Culverwell, S. B. Healy, S. Elvidge\",\"doi\":\"10.1029/2023sw003572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new one-dimensional variational (1D-Var) retrieval method for ionospheric GNSS radio occultation (GNSS-RO) measurements is described. The forward model implicit in the retrieval calculates the bending angles produced by a one-dimensional ionospheric electron density profile, modeled with multiple “Vary-Chap” layers. It is demonstrated that gradient based minimization techniques can be applied to this retrieval problem. The use of ionospheric bending angles is discussed. This approach circumvents the need for Differential Code Bias (DCB) estimates when using the measurements. This new, general retrieval method is applicable to both standard GNSS-RO retrieval problems, and the truncated geometry of EUMETSAT's Metop Second Generation (Metop-SG), which will provide GNSS-RO measurements up to about 600 km above the surface. The climatological a priori information used in the 1D-Var is effectively a starting point for the 1D-Var minimization, rather than a strong constraint on the final solution. In this paper the approach has been tested with 143 COSMIC-1 measurements. We find that the method converges in 135 of the cases, but around 25 of those have high “cost at convergence” values. In the companion paper (Elvidge et al., 2023), a full statistical analysis of the method, using over 10,000 COSMIC-2 measurements, has been made.\",\"PeriodicalId\":22181,\"journal\":{\"name\":\"Space Weather\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Space Weather\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2023sw003572\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Weather","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023sw003572","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍了电离层全球导航卫星系统无线电掩星(GNSS-RO)测量的一种新的一维变分(1D-Var)检索方法。检索中隐含的前向模型计算一维电离层电子密度剖面产生的弯曲角,该剖面以多个 "Vary-Chap "层为模型。结果表明,基于梯度的最小化技术可用于这一检索问题。讨论了电离层弯曲角的使用。这种方法避免了在使用测量时对差分码偏差(DCB)估计的需要。这种新的一般检索方法既适用于标准的全球导航卫星系统-RO 检索问题,也适用于欧洲气象卫星应用组织的第二代 Metop(Metop-SG)的截断几何,后者将提供距离地面约 600 公里的全球导航卫星系统-RO 测量。1D-Var 中使用的先验气候学信息实际上是 1D-Var 最小化的起点,而不是最终解决方案的有力约束。本文利用 143 个 COSMIC-1 测量数据对该方法进行了测试。我们发现,该方法在 135 个案例中收敛,但其中约 25 个案例的 "收敛成本 "值较高。在配套论文(Elvidge 等人,2023 年)中,利用 10,000 多次 COSMIC-2 测量对该方法进行了全面统计分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
One-Dimensional Variational Ionospheric Retrieval Using Radio Occultation Bending Angles: 1. Theory
A new one-dimensional variational (1D-Var) retrieval method for ionospheric GNSS radio occultation (GNSS-RO) measurements is described. The forward model implicit in the retrieval calculates the bending angles produced by a one-dimensional ionospheric electron density profile, modeled with multiple “Vary-Chap” layers. It is demonstrated that gradient based minimization techniques can be applied to this retrieval problem. The use of ionospheric bending angles is discussed. This approach circumvents the need for Differential Code Bias (DCB) estimates when using the measurements. This new, general retrieval method is applicable to both standard GNSS-RO retrieval problems, and the truncated geometry of EUMETSAT's Metop Second Generation (Metop-SG), which will provide GNSS-RO measurements up to about 600 km above the surface. The climatological a priori information used in the 1D-Var is effectively a starting point for the 1D-Var minimization, rather than a strong constraint on the final solution. In this paper the approach has been tested with 143 COSMIC-1 measurements. We find that the method converges in 135 of the cases, but around 25 of those have high “cost at convergence” values. In the companion paper (Elvidge et al., 2023), a full statistical analysis of the method, using over 10,000 COSMIC-2 measurements, has been made.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
29.70%
发文量
166
期刊最新文献
Quantification of Representation Error in the Neutral Winds and Ion Drifts Using Data Assimilation A Novel Ionospheric Inversion Model: PINN-SAMI3 (Physics Informed Neural Network Based on SAMI3) Nowcasting Solar EUV Irradiance With Photospheric Magnetic Fields and the Mg II Index Calculating the High-Latitude Ionospheric Electrodynamics Using a Machine Learning-Based Field-Aligned Current Model Effects of Forbush Decreases on the Global Electric Circuit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1