可持续观点:绿色提取技术的生命周期分析

IF 6.2 3区 工程技术 Q1 ENGINEERING, CHEMICAL ChemBioEng Reviews Pub Date : 2024-01-08 DOI:10.1002/cben.202300056
Dr. Bahar Aslanbay Guler, Ugur Tepe, Dr. Esra Imamoglu
{"title":"可持续观点:绿色提取技术的生命周期分析","authors":"Dr. Bahar Aslanbay Guler,&nbsp;Ugur Tepe,&nbsp;Dr. Esra Imamoglu","doi":"10.1002/cben.202300056","DOIUrl":null,"url":null,"abstract":"<p>Microalgae have emerged as a promising source of renewable energy and natural bioproducts since they show high biomass productivity, offer carbon dioxide fixation, and exhibit a rich content of compounds. Recent efforts have focused on green extraction technologies that utilize green solvents to further promote sustainability and minimize the environmental impact of the microalgal process. At this point, life cycle analysis (LCA) provides valuable insights into the environmental impacts of specific products and techniques. A comprehensive overview of the life cycle environmental and energy assessments conducted for the extraction of metabolites from microalgae is presented. Special attention is given to using green extraction technologies, i.e., supercritical fluid extraction, pressurized liquid extraction, microwave-assisted extraction, ultrasound-assisted extraction, and pulsed-electric field extraction, and solvents to ensure sustainability. Additionally, the main principles, historical development, tools, and challenges of LCA are discussed. By addressing these aspects, the paper attracts attention to the environmental impacts associated with green extraction techniques for obtaining microalgal metabolites.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 2","pages":"348-362"},"PeriodicalIF":6.2000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cben.202300056","citationCount":"0","resultStr":"{\"title\":\"Sustainable Point of View: Life Cycle Analysis for Green Extraction Technologies\",\"authors\":\"Dr. Bahar Aslanbay Guler,&nbsp;Ugur Tepe,&nbsp;Dr. Esra Imamoglu\",\"doi\":\"10.1002/cben.202300056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Microalgae have emerged as a promising source of renewable energy and natural bioproducts since they show high biomass productivity, offer carbon dioxide fixation, and exhibit a rich content of compounds. Recent efforts have focused on green extraction technologies that utilize green solvents to further promote sustainability and minimize the environmental impact of the microalgal process. At this point, life cycle analysis (LCA) provides valuable insights into the environmental impacts of specific products and techniques. A comprehensive overview of the life cycle environmental and energy assessments conducted for the extraction of metabolites from microalgae is presented. Special attention is given to using green extraction technologies, i.e., supercritical fluid extraction, pressurized liquid extraction, microwave-assisted extraction, ultrasound-assisted extraction, and pulsed-electric field extraction, and solvents to ensure sustainability. Additionally, the main principles, historical development, tools, and challenges of LCA are discussed. By addressing these aspects, the paper attracts attention to the environmental impacts associated with green extraction techniques for obtaining microalgal metabolites.</p>\",\"PeriodicalId\":48623,\"journal\":{\"name\":\"ChemBioEng Reviews\",\"volume\":\"11 2\",\"pages\":\"348-362\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cben.202300056\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemBioEng Reviews\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cben.202300056\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioEng Reviews","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cben.202300056","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

微藻显示出较高的生物量生产率、二氧化碳固定能力以及丰富的化合物含量,因此已成为一种前景广阔的可再生能源和天然生物产品来源。近期的工作重点是利用绿色溶剂的绿色萃取技术,以进一步促进可持续发展,最大限度地减少微藻加工过程对环境的影响。在这一点上,生命周期分析(LCA)为了解特定产品和技术对环境的影响提供了宝贵的见解。本文全面概述了针对从微藻中提取代谢物所进行的生命周期环境和能源评估。特别关注了绿色萃取技术的使用,即超临界流体萃取、加压液体萃取、微波辅助萃取、超声辅助萃取和脉冲电场萃取以及溶剂,以确保可持续性。此外,还讨论了生命周期评估的主要原则、历史发展、工具和挑战。通过对这些方面的探讨,本文引起了人们对与获取微藻代谢物的绿色萃取技术相关的环境影响的关注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sustainable Point of View: Life Cycle Analysis for Green Extraction Technologies

Microalgae have emerged as a promising source of renewable energy and natural bioproducts since they show high biomass productivity, offer carbon dioxide fixation, and exhibit a rich content of compounds. Recent efforts have focused on green extraction technologies that utilize green solvents to further promote sustainability and minimize the environmental impact of the microalgal process. At this point, life cycle analysis (LCA) provides valuable insights into the environmental impacts of specific products and techniques. A comprehensive overview of the life cycle environmental and energy assessments conducted for the extraction of metabolites from microalgae is presented. Special attention is given to using green extraction technologies, i.e., supercritical fluid extraction, pressurized liquid extraction, microwave-assisted extraction, ultrasound-assisted extraction, and pulsed-electric field extraction, and solvents to ensure sustainability. Additionally, the main principles, historical development, tools, and challenges of LCA are discussed. By addressing these aspects, the paper attracts attention to the environmental impacts associated with green extraction techniques for obtaining microalgal metabolites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemBioEng Reviews
ChemBioEng Reviews Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
7.90
自引率
2.10%
发文量
45
期刊介绍: Launched in 2014, ChemBioEng Reviews is aimed to become a top-ranking journal publishing review articles offering information on significant developments and provide fundamental knowledge of important topics in the fields of chemical engineering and biotechnology. The journal supports academics and researchers in need for concise, easy to access information on specific topics. The articles cover all fields of (bio-) chemical engineering and technology, e.g.,
期刊最新文献
Cover Picture: ChemBioEng Reviews 5/2024 Masthead: ChemBioEng Reviews 5/2024 Table of Contents: ChemBioEng Reviews 5/2024 Anaerobic Digestion for Textile Waste Treatment and Valorization Glycerol as a Feedstock for Chemical Synthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1