带有纳米纤维碳的新型双通道氮化碳同质结可显著提高光催化过氧化氢的生成量

IF 17.2 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Fiber Materials Pub Date : 2024-01-09 DOI:10.1007/s42765-023-00354-9
Jianwen Zhou, Tianshang Shan, Fengshan Zhang, Bruno Boury, Liulian Huang, Yingkui Yang, Guangfu Liao, He Xiao, Lihui Chen
{"title":"带有纳米纤维碳的新型双通道氮化碳同质结可显著提高光催化过氧化氢的生成量","authors":"Jianwen Zhou,&nbsp;Tianshang Shan,&nbsp;Fengshan Zhang,&nbsp;Bruno Boury,&nbsp;Liulian Huang,&nbsp;Yingkui Yang,&nbsp;Guangfu Liao,&nbsp;He Xiao,&nbsp;Lihui Chen","doi":"10.1007/s42765-023-00354-9","DOIUrl":null,"url":null,"abstract":"<div><p>Photocatalytic H<sub>2</sub>O<sub>2</sub> synthesis (PHS) via graphite carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) is a low-carbon and environmentally friendly approach, which has garnered tremendous attention. However, as for the pristine g-C<sub>3</sub>N<sub>4</sub>, the PHS is severely constrained by the slow transfer and rapid recombination of photogenerated carriers. Herein, we introduced cellulose-derived carbon nanofibers (CF) into the homojunction of g-C<sub>3</sub>N<sub>4</sub> nanotubes (MCN) and g-C<sub>3</sub>N<sub>4</sub> nanosheets (SCN). A series of photocatalytic results demonstrate that the embedding of cellulose-derived carbon for MCN/SCN/CF composite catalyst significantly improved the photocatalytic H<sub>2</sub>O<sub>2</sub> generation (136.9 μmol·L<sup>−1</sup>·h<sup>−1</sup>) with 5-holds higher than that of individual MCN (27.5 μmol·L<sup>−1</sup>·h<sup>−1</sup>) without any sacrificial agent. This enhancement can be attributed to the combined effects of the two-step one-electron oxygen reduction reaction (ORR) on conduction band (CB) side and the water oxidation reaction (WOR) on valence band (VB) side. A comprehensive characterization of the mechanism indicates that CF enhances the absorption of light, promotes the separation and migration of photogenerated carriers, and regulates the position of the valence and conduction bands with an effective dual-channel ORR pathway for photo-synthesis of H<sub>2</sub>O<sub>2</sub>. This work provides valuable insights into utilizing biomass-based materials for significantly boosting photocatalytic H<sub>2</sub>O<sub>2</sub> production.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 2","pages":"387 - 400"},"PeriodicalIF":17.2000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Dual-Channel Carbon Nitride Homojunction with Nanofibrous Carbon for Significantly Boosting Photocatalytic Hydrogen Peroxide Production\",\"authors\":\"Jianwen Zhou,&nbsp;Tianshang Shan,&nbsp;Fengshan Zhang,&nbsp;Bruno Boury,&nbsp;Liulian Huang,&nbsp;Yingkui Yang,&nbsp;Guangfu Liao,&nbsp;He Xiao,&nbsp;Lihui Chen\",\"doi\":\"10.1007/s42765-023-00354-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Photocatalytic H<sub>2</sub>O<sub>2</sub> synthesis (PHS) via graphite carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) is a low-carbon and environmentally friendly approach, which has garnered tremendous attention. However, as for the pristine g-C<sub>3</sub>N<sub>4</sub>, the PHS is severely constrained by the slow transfer and rapid recombination of photogenerated carriers. Herein, we introduced cellulose-derived carbon nanofibers (CF) into the homojunction of g-C<sub>3</sub>N<sub>4</sub> nanotubes (MCN) and g-C<sub>3</sub>N<sub>4</sub> nanosheets (SCN). A series of photocatalytic results demonstrate that the embedding of cellulose-derived carbon for MCN/SCN/CF composite catalyst significantly improved the photocatalytic H<sub>2</sub>O<sub>2</sub> generation (136.9 μmol·L<sup>−1</sup>·h<sup>−1</sup>) with 5-holds higher than that of individual MCN (27.5 μmol·L<sup>−1</sup>·h<sup>−1</sup>) without any sacrificial agent. This enhancement can be attributed to the combined effects of the two-step one-electron oxygen reduction reaction (ORR) on conduction band (CB) side and the water oxidation reaction (WOR) on valence band (VB) side. A comprehensive characterization of the mechanism indicates that CF enhances the absorption of light, promotes the separation and migration of photogenerated carriers, and regulates the position of the valence and conduction bands with an effective dual-channel ORR pathway for photo-synthesis of H<sub>2</sub>O<sub>2</sub>. This work provides valuable insights into utilizing biomass-based materials for significantly boosting photocatalytic H<sub>2</sub>O<sub>2</sub> production.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":459,\"journal\":{\"name\":\"Advanced Fiber Materials\",\"volume\":\"6 2\",\"pages\":\"387 - 400\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Fiber Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42765-023-00354-9\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-023-00354-9","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过氮化石墨(g-C3N4)光催化合成 H2O2(PHS)是一种低碳环保的方法,受到了广泛关注。然而,就原始 g-C3N4 而言,光生载流子的缓慢转移和快速重组严重制约了 PHS 的实现。在此,我们在 g-C3N4 纳米管(MCN)和 g-C3N4 纳米片(SCN)的同向接合中引入了纤维素衍生的碳纳米纤维(CF)。一系列光催化结果表明,在 MCN/SCN/CF 复合催化剂中嵌入纤维素衍生碳可显著提高光催化 H2O2 的生成量(136.9 μmol-L-1-h-1),比不使用任何牺牲剂的单个 MCN 的生成量(27.5 μmol-L-1-h-1)高出 5 倍。这种提高可归因于导带(CB)侧的两步单电子氧还原反应(ORR)和价带(VB)侧的水氧化反应(WOR)的共同作用。对其机理的全面分析表明,CF 增强了对光的吸收,促进了光生载流子的分离和迁移,并调节了价带和导带的位置,为光合成 H2O2 提供了有效的双通道 ORR 途径。这项工作为利用生物基材料大幅提高光催化 H2O2 产量提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Dual-Channel Carbon Nitride Homojunction with Nanofibrous Carbon for Significantly Boosting Photocatalytic Hydrogen Peroxide Production

Photocatalytic H2O2 synthesis (PHS) via graphite carbon nitride (g-C3N4) is a low-carbon and environmentally friendly approach, which has garnered tremendous attention. However, as for the pristine g-C3N4, the PHS is severely constrained by the slow transfer and rapid recombination of photogenerated carriers. Herein, we introduced cellulose-derived carbon nanofibers (CF) into the homojunction of g-C3N4 nanotubes (MCN) and g-C3N4 nanosheets (SCN). A series of photocatalytic results demonstrate that the embedding of cellulose-derived carbon for MCN/SCN/CF composite catalyst significantly improved the photocatalytic H2O2 generation (136.9 μmol·L−1·h−1) with 5-holds higher than that of individual MCN (27.5 μmol·L−1·h−1) without any sacrificial agent. This enhancement can be attributed to the combined effects of the two-step one-electron oxygen reduction reaction (ORR) on conduction band (CB) side and the water oxidation reaction (WOR) on valence band (VB) side. A comprehensive characterization of the mechanism indicates that CF enhances the absorption of light, promotes the separation and migration of photogenerated carriers, and regulates the position of the valence and conduction bands with an effective dual-channel ORR pathway for photo-synthesis of H2O2. This work provides valuable insights into utilizing biomass-based materials for significantly boosting photocatalytic H2O2 production.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
18.70
自引率
11.20%
发文量
109
期刊介绍: Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al. Publishing on fiber or fiber-related materials, technology, engineering and application.
期刊最新文献
Bioactive Glass-Reinforced Hybrid Microfibrous Spheres Promote Bone Defect Repair via Stem Cell Delivery Fiber/Yarn and Textile-Based Piezoresistive Pressure Sensors ACAn Energy-Autonomous Wearable Fabric Powered by High-Power Density Sweat-Activated Batteries for Health Monitoring Robust Dual Equivariant Gradient Antibacterial Wound Dressing-Loaded Artificial Skin with Nano-chitin Particles Via an Electrospinning-Reactive Strategy Fiber Science at Xinjiang University: A Special Issue Dedicated to Centennial Celebration of Xinjiang University
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1