Tingting Wang, Tao Tang, Zhen Cai, Kai Fang, Jinyu Tian, Jianqing Li, Wei Wang, Feng Xia
{"title":"基于联合学习的安全医疗物联网信息泄漏风险检测","authors":"Tingting Wang, Tao Tang, Zhen Cai, Kai Fang, Jinyu Tian, Jianqing Li, Wei Wang, Feng Xia","doi":"10.1145/3639466","DOIUrl":null,"url":null,"abstract":"<p>The Medical Internet of Things (MIoT) requires extreme information and communication security, particularly for remote consultation systems. MIoT’s integration of physical and computational components creates a seamless network of medical devices providing high-quality care via continuous monitoring and treatment. However, traditional security methods such as cryptography cannot prevent privacy compromise and information leakage caused by security breaches. To solve this issue, this paper proposes a novel Federated Learning Intrusion Detection System (FLIDS). FLIDS combines Generative Adversarial Network (GAN) and Federated Learning (FL) to detect cyber attacks like Denial of Service (DoS), data modification, and data injection using machine learning. FLIDS shows exceptional performance with over 99% detection accuracy and 1% False Positive Rate (FPR). It saves bandwidth by transmitting 3.8 times fewer bytes compared to central data collection. These results prove FLIDS’ effectiveness in detecting and mitigating security threats in Medical Cyber-Physical Systems (MCPS). The paper recommends scaling up FLIDS to use computing resources from multiple mobile devices for better intrusion detection accuracy and efficiency while reducing the burden on individual devices in MIoT.</p>","PeriodicalId":50911,"journal":{"name":"ACM Transactions on Internet Technology","volume":"54 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Federated Learning-based Information Leakage Risk Detection for Secure Medical Internet of Things\",\"authors\":\"Tingting Wang, Tao Tang, Zhen Cai, Kai Fang, Jinyu Tian, Jianqing Li, Wei Wang, Feng Xia\",\"doi\":\"10.1145/3639466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Medical Internet of Things (MIoT) requires extreme information and communication security, particularly for remote consultation systems. MIoT’s integration of physical and computational components creates a seamless network of medical devices providing high-quality care via continuous monitoring and treatment. However, traditional security methods such as cryptography cannot prevent privacy compromise and information leakage caused by security breaches. To solve this issue, this paper proposes a novel Federated Learning Intrusion Detection System (FLIDS). FLIDS combines Generative Adversarial Network (GAN) and Federated Learning (FL) to detect cyber attacks like Denial of Service (DoS), data modification, and data injection using machine learning. FLIDS shows exceptional performance with over 99% detection accuracy and 1% False Positive Rate (FPR). It saves bandwidth by transmitting 3.8 times fewer bytes compared to central data collection. These results prove FLIDS’ effectiveness in detecting and mitigating security threats in Medical Cyber-Physical Systems (MCPS). The paper recommends scaling up FLIDS to use computing resources from multiple mobile devices for better intrusion detection accuracy and efficiency while reducing the burden on individual devices in MIoT.</p>\",\"PeriodicalId\":50911,\"journal\":{\"name\":\"ACM Transactions on Internet Technology\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Internet Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3639466\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3639466","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Federated Learning-based Information Leakage Risk Detection for Secure Medical Internet of Things
The Medical Internet of Things (MIoT) requires extreme information and communication security, particularly for remote consultation systems. MIoT’s integration of physical and computational components creates a seamless network of medical devices providing high-quality care via continuous monitoring and treatment. However, traditional security methods such as cryptography cannot prevent privacy compromise and information leakage caused by security breaches. To solve this issue, this paper proposes a novel Federated Learning Intrusion Detection System (FLIDS). FLIDS combines Generative Adversarial Network (GAN) and Federated Learning (FL) to detect cyber attacks like Denial of Service (DoS), data modification, and data injection using machine learning. FLIDS shows exceptional performance with over 99% detection accuracy and 1% False Positive Rate (FPR). It saves bandwidth by transmitting 3.8 times fewer bytes compared to central data collection. These results prove FLIDS’ effectiveness in detecting and mitigating security threats in Medical Cyber-Physical Systems (MCPS). The paper recommends scaling up FLIDS to use computing resources from multiple mobile devices for better intrusion detection accuracy and efficiency while reducing the burden on individual devices in MIoT.
期刊介绍:
ACM Transactions on Internet Technology (TOIT) brings together many computing disciplines including computer software engineering, computer programming languages, middleware, database management, security, knowledge discovery and data mining, networking and distributed systems, communications, performance and scalability etc. TOIT will cover the results and roles of the individual disciplines and the relationshipsamong them.