Sergei A Naifert, Artem A Osipov, Andrey N Efremov, Kanthapazham Rajakumar, Daniil A Uchaev, Dmitry A Zherebtsov, Kirill N Belov
{"title":"含有新型刚性螯合连接体:二乙酰基二水杨酸的一维和二维配位聚合物。","authors":"Sergei A Naifert, Artem A Osipov, Andrey N Efremov, Kanthapazham Rajakumar, Daniil A Uchaev, Dmitry A Zherebtsov, Kirill N Belov","doi":"10.1107/S205252062301017X","DOIUrl":null,"url":null,"abstract":"<p><p>Diacetylenedisalicylic acid is a new rigid linker molecule, capable of forming strong chelate bonds with metal cations. Its monosubstituted salts with dimethylamine and sodium form 1D and 2D coordination polymers, whose structures were solved from single crystals, along with the dimethyl ester of diacetylenedisalicylic acid. The structure of the dimethyl ester is characterized by a dense co-facial π-stacking of molecules with a dominance of van der Waals interactions between the stacks. The angle between the stack direction and the butadiyne groups does not meet the Enkelmann criterion for polymerization in a crystal. In contrast to the dimethyl ester, both salts have a rigid framework with channels filled with disordered solvent molecules. Photoluminescence spectra of the acid and its dimethyl ester have been studied. Thermal analysis of the acid confirms its high thermal stability to 286°C. The acid and its dimethyl ester are prone to polymerization on further heating followed by 50-52% mass loss, forming an amorphous carbon residue at 1000°C.</p>","PeriodicalId":7320,"journal":{"name":"Acta crystallographica Section B, Structural science, crystal engineering and materials","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"1D and 2D coordination polymers with a new rigid chelating linker: diacetylenedisalicylic acid.\",\"authors\":\"Sergei A Naifert, Artem A Osipov, Andrey N Efremov, Kanthapazham Rajakumar, Daniil A Uchaev, Dmitry A Zherebtsov, Kirill N Belov\",\"doi\":\"10.1107/S205252062301017X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diacetylenedisalicylic acid is a new rigid linker molecule, capable of forming strong chelate bonds with metal cations. Its monosubstituted salts with dimethylamine and sodium form 1D and 2D coordination polymers, whose structures were solved from single crystals, along with the dimethyl ester of diacetylenedisalicylic acid. The structure of the dimethyl ester is characterized by a dense co-facial π-stacking of molecules with a dominance of van der Waals interactions between the stacks. The angle between the stack direction and the butadiyne groups does not meet the Enkelmann criterion for polymerization in a crystal. In contrast to the dimethyl ester, both salts have a rigid framework with channels filled with disordered solvent molecules. Photoluminescence spectra of the acid and its dimethyl ester have been studied. Thermal analysis of the acid confirms its high thermal stability to 286°C. The acid and its dimethyl ester are prone to polymerization on further heating followed by 50-52% mass loss, forming an amorphous carbon residue at 1000°C.</p>\",\"PeriodicalId\":7320,\"journal\":{\"name\":\"Acta crystallographica Section B, Structural science, crystal engineering and materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta crystallographica Section B, Structural science, crystal engineering and materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1107/S205252062301017X\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica Section B, Structural science, crystal engineering and materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1107/S205252062301017X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
1D and 2D coordination polymers with a new rigid chelating linker: diacetylenedisalicylic acid.
Diacetylenedisalicylic acid is a new rigid linker molecule, capable of forming strong chelate bonds with metal cations. Its monosubstituted salts with dimethylamine and sodium form 1D and 2D coordination polymers, whose structures were solved from single crystals, along with the dimethyl ester of diacetylenedisalicylic acid. The structure of the dimethyl ester is characterized by a dense co-facial π-stacking of molecules with a dominance of van der Waals interactions between the stacks. The angle between the stack direction and the butadiyne groups does not meet the Enkelmann criterion for polymerization in a crystal. In contrast to the dimethyl ester, both salts have a rigid framework with channels filled with disordered solvent molecules. Photoluminescence spectra of the acid and its dimethyl ester have been studied. Thermal analysis of the acid confirms its high thermal stability to 286°C. The acid and its dimethyl ester are prone to polymerization on further heating followed by 50-52% mass loss, forming an amorphous carbon residue at 1000°C.
期刊介绍:
Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials publishes scientific articles related to the structural science of compounds and materials in the widest sense. Knowledge of the arrangements of atoms, including their temporal variations and dependencies on temperature and pressure, is often the key to understanding physical and chemical phenomena and is crucial for the design of new materials and supramolecular devices. Acta Crystallographica B is the forum for the publication of such contributions. Scientific developments based on experimental studies as well as those based on theoretical approaches, including crystal-structure prediction, structure-property relations and the use of databases of crystal structures, are published.