{"title":"从废液中分离放射性碘的处理剂的可行性。","authors":"Masahiro Hirota, Shogo Higaki, Yoshiyuki Ishida, Daisuke Nakata, Keiji Terao, Shigeki Ito","doi":"10.1097/HP.0000000000001780","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>To discharge waste liquid containing radioactive iodine into sewage systems, long-term storage or dilution with a large amount of water may be required until the radioactivity concentration reduces below the standard value. Processing the waste liquid could be easier if radioactive iodine could be separated from the water. This study verified the effectiveness of superabsorbent polymer and α-cyclodextrin as treatment agents to separate radioactive iodine from waste liquids. Sodium iodide (Na 125 I) was added to purified water and artificial urine to prepare simulated waste liquids containing iodine equivalent to the urine of patients treated with radioactive iodine. The as-prepared simulated waste liquid was poured into a container with superabsorbent polymer and left for 90 d. The residual iodine rate in the simulated waste liquid was estimated by measuring 125 I radioactivity. When the water was sufficiently dried, residual iodine rates on day 15 were 0.102 and 0.884 in the simulated waste liquids comprising purified water and artificial urine, respectively. The simulated waste liquid comprising purified water with 5% α-cyclodextrin absorbed by 1 g of superabsorbent polymer had a residual rate of 0.980. Moreover, the residual rate of simulated waste liquid comprising artificial urine with 2% α-cyclodextrin absorbed by 1 g of SAP was 0.949. Superabsorbent polymer combined with α-cyclodextrin was an effective treatment agent for separating radioactive iodine from waste liquids.</p>","PeriodicalId":12976,"journal":{"name":"Health physics","volume":" ","pages":"365-372"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility of Treatment Agents in Radioactive Iodine Separation from Waste Liquids.\",\"authors\":\"Masahiro Hirota, Shogo Higaki, Yoshiyuki Ishida, Daisuke Nakata, Keiji Terao, Shigeki Ito\",\"doi\":\"10.1097/HP.0000000000001780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Abstract: </strong>To discharge waste liquid containing radioactive iodine into sewage systems, long-term storage or dilution with a large amount of water may be required until the radioactivity concentration reduces below the standard value. Processing the waste liquid could be easier if radioactive iodine could be separated from the water. This study verified the effectiveness of superabsorbent polymer and α-cyclodextrin as treatment agents to separate radioactive iodine from waste liquids. Sodium iodide (Na 125 I) was added to purified water and artificial urine to prepare simulated waste liquids containing iodine equivalent to the urine of patients treated with radioactive iodine. The as-prepared simulated waste liquid was poured into a container with superabsorbent polymer and left for 90 d. The residual iodine rate in the simulated waste liquid was estimated by measuring 125 I radioactivity. When the water was sufficiently dried, residual iodine rates on day 15 were 0.102 and 0.884 in the simulated waste liquids comprising purified water and artificial urine, respectively. The simulated waste liquid comprising purified water with 5% α-cyclodextrin absorbed by 1 g of superabsorbent polymer had a residual rate of 0.980. Moreover, the residual rate of simulated waste liquid comprising artificial urine with 2% α-cyclodextrin absorbed by 1 g of SAP was 0.949. Superabsorbent polymer combined with α-cyclodextrin was an effective treatment agent for separating radioactive iodine from waste liquids.</p>\",\"PeriodicalId\":12976,\"journal\":{\"name\":\"Health physics\",\"volume\":\" \",\"pages\":\"365-372\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/HP.0000000000001780\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HP.0000000000001780","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/10 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Feasibility of Treatment Agents in Radioactive Iodine Separation from Waste Liquids.
Abstract: To discharge waste liquid containing radioactive iodine into sewage systems, long-term storage or dilution with a large amount of water may be required until the radioactivity concentration reduces below the standard value. Processing the waste liquid could be easier if radioactive iodine could be separated from the water. This study verified the effectiveness of superabsorbent polymer and α-cyclodextrin as treatment agents to separate radioactive iodine from waste liquids. Sodium iodide (Na 125 I) was added to purified water and artificial urine to prepare simulated waste liquids containing iodine equivalent to the urine of patients treated with radioactive iodine. The as-prepared simulated waste liquid was poured into a container with superabsorbent polymer and left for 90 d. The residual iodine rate in the simulated waste liquid was estimated by measuring 125 I radioactivity. When the water was sufficiently dried, residual iodine rates on day 15 were 0.102 and 0.884 in the simulated waste liquids comprising purified water and artificial urine, respectively. The simulated waste liquid comprising purified water with 5% α-cyclodextrin absorbed by 1 g of superabsorbent polymer had a residual rate of 0.980. Moreover, the residual rate of simulated waste liquid comprising artificial urine with 2% α-cyclodextrin absorbed by 1 g of SAP was 0.949. Superabsorbent polymer combined with α-cyclodextrin was an effective treatment agent for separating radioactive iodine from waste liquids.
期刊介绍:
Health Physics, first published in 1958, provides the latest research to a wide variety of radiation safety professionals including health physicists, nuclear chemists, medical physicists, and radiation safety officers with interests in nuclear and radiation science. The Journal allows professionals in these and other disciplines in science and engineering to stay on the cutting edge of scientific and technological advances in the field of radiation safety. The Journal publishes original papers, technical notes, articles on advances in practical applications, editorials, and correspondence. Journal articles report on the latest findings in theoretical, practical, and applied disciplines of epidemiology and radiation effects, radiation biology and radiation science, radiation ecology, and related fields.